Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions

J. Esterle

Studia Mathematica (1996)

  • Volume: 120, Issue: 2, page 113-153
  • ISSN: 0039-3223

How to cite

top

Esterle, J.. "Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions." Studia Mathematica 120.2 (1996): 113-153. <http://eudml.org/doc/216325>.

@article{Esterle1996,
abstract = {},
author = {Esterle, J.},
journal = {Studia Mathematica},
keywords = {ideal structure; topological Beurling algebras; closed ideals},
language = {eng},
number = {2},
pages = {113-153},
title = {Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions},
url = {http://eudml.org/doc/216325},
volume = {120},
year = {1996},
}

TY - JOUR
AU - Esterle, J.
TI - Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 2
SP - 113
EP - 153
AB -
LA - eng
KW - ideal structure; topological Beurling algebras; closed ideals
UR - http://eudml.org/doc/216325
ER -

References

top
  1. [1] A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27-63. Zbl0449.47007
  2. [2] A. Atzmon, Operators with resolvent of bounded characteristic, Integral Equations Oper. Theory 6 (1983), 779-802. 
  3. [3] C. Bennett and J. E. Gilbert, Homogeneous algebras on the circle: I--Ideals of analytic functions, Ann. Inst. Fourier (Grenoble) 22 (3) (1972), 1-19. Zbl0228.46046
  4. [4] L. Carleson, Sets of uniqueness of functions regular in the unit circle, Acta Math. 87 (1952), 325-345. Zbl0046.30005
  5. [5] I. Domar, On the analytic transform of bounded linear functionals on certain Banach algebras, Studia Math. 53 (1975), 203-224. Zbl0272.46030
  6. [6] R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1) (1970), 37-76. Zbl0186.45302
  7. [7] J. Esterle, Quasimultipliers, representations of H , and the closed ideal problem for commutative Banach algebras, in: Lecture Notes in Math. 975, Springer, 1983, 66-162. 
  8. [8] J. Esterle, Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A + , J. Reine Angew. Math. 450 (1994), 43-82. 
  9. [9] J. Esterle, Uniqueness, strong forms of uniqueness and negative powers of contractions, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 127-145. Zbl0893.46043
  10. [10] J. Esterle, M. Rajoelina and M. Zarrabi, On contractions with spectrum contained in the Cantor set, Math. Proc. Cambridge Philos. Soc. 117 (1995), 339-343. Zbl0830.47001
  11. [11] J. Esterle, E. Strouse and F. Zouakia, Closed ideals of the algebra of absolutely convergent Taylor series, Bull. Amer. Math. Soc. 31 (1994), 39-43. Zbl0803.46052
  12. [12] J. Esterle, E. Strouse and F. Zouakia, Closed ideals of A + and the Cantor set, J. Reine Angew. Math. 449 (1994), 65-79. Zbl0791.46027
  13. [13] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979. Zbl0439.43001
  14. [14] V. P. Gurariĭ, Harmonic analysis in spaces with a weight, Trans. Moscow Math. Soc. 35 (1979), 21-75. 
  15. [15] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. Zbl0117.34001
  16. [16] J. P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb. 50, Springer, Berlin, 1970. 
  17. [17] J. P. Kahane, Idéaux fermés dans certaines algèbres de fonctions analytiques, in: Lecture Notes in Math. 336, Springer, 1973, 5-14. 
  18. [18] J. P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. Zbl0112.29304
  19. [19] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. 
  20. [20] K. Kellay, Synthèse des hyperdistributions à coefficients de Fourier négatifs bornés, in preparation. 
  21. [21] B. Korenblyum, Closed ideals in the ring A n , Functional Anal. Appl. 6 (1972), 203-214. 
  22. [22] A. L. Matheson, Closed ideals in rings of analytic functions satisfying a Lipschitz condition, in: Lecture Notes in Math. 604, Springer, 1976, 67-72. 
  23. [23] I. I. Privalov, Randeigenschaften analytischer Funktionen, Zweite Aufl., Deutsch. Verlag Wiss., Berlin, 1956. 
  24. [24] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966. 
  25. [25] B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266-1283. Zbl0204.44302
  26. [26] G. S. Tumarkin, Description of a class of functions approximable by rational functions with fixed poles, Izv. Akad. Nauk Armyansk. SSR 2 (1966), 89-105 (in Russian). 
  27. [27] M. Zarrabi, Synthèse spectrale dans certaines algèbres de Beurling sur le cercle unité, Bull. Soc. Math. France 118 (1990), 241-249. 
  28. [28] M. Zarrabi, Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier (Grenoble) 43 (1) (1993), 251-263. 
  29. [29] E. H. Zerouali, Synthèse spectrale dans une certaine limite projective d'algèbres de Beurling, Ann. Sci. Math. Québec 16 (1992), 109-115. 
  30. [30] E. H. Zerouali, Ensembles universels de synthèse pour les algèbres de Beurling, Bull. Sci. Math. (2) 118 (1994), 209-223. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.