Sous-espaces biinvariants pour certains shifts pondérés

O. El-Fallah; Karim Kellay

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 5, page 1543-1558
  • ISSN: 0373-0956

Abstract

top
We study the biinvariant subspaces for the usual shift on the weighted spaces L ω 2 = { f L 2 ( 𝕋 ) : f ω = n | f ( n ) | ω 2 ( n ) 1 / 2 < + } , where ω ( n ) = ( 1 + n ) p , n 0 and ω ( n ) ( 1 + | n | ) p n - + for some integer p 1 . We show that the analytic part of all biinvariant subspaces is spectral if n 2 1 n log ω ( - n ) diverges, but that this does not hold when n 2 1 n log ω ( - n ) converges.

How to cite

top

El-Fallah, O., and Kellay, Karim. "Sous-espaces biinvariants pour certains shifts pondérés." Annales de l'institut Fourier 48.5 (1998): 1543-1558. <http://eudml.org/doc/75330>.

@article{El1998,
abstract = {Nous étudions les sous-espaces biinvariants du shift usuel sur les espaces à poids\begin\{\}L^2\_\omega =\Big \lbrace f\in L^2(\{\Bbb T\}):\Vert f\Vert \_\omega = \Big (\sum \_\{n\in \{\Bbb Z\}\} \vert f(n)\vert \omega ^2(n)\Big )^\{1/2\}&lt; +\infty \Big \rbrace ,\end\{\}où $\omega (n)=(1+n)^p, n\ge 0$ et $\{\omega (n)\over (1+\vert n\vert )^p\}\{\mathrel \{\mathop \{\hspace\{0.0pt\}n\rightarrow -\infty \}\limits ^\{\rightarrow \}\}\} +\infty $, pour un certain entier $p\ge 1$. Nous montrons que la trace analytique de tout sous-espace biinvariant est de type spectral, lorsque $\sum _\{n\ge 2\}\{1\over n\log \omega (-n)\}$ diverge, mais que ceci n’est plus valable lorsque $\sum _\{n\ge 2\}\{1\over n\log \omega (-n)\}$ converge.},
author = {El-Fallah, O., Kellay, Karim},
journal = {Annales de l'institut Fourier},
keywords = {biinvariant subspace; hyperfunction; Carleson set; weighted shifts; weight asymmetry},
language = {fre},
number = {5},
pages = {1543-1558},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sous-espaces biinvariants pour certains shifts pondérés},
url = {http://eudml.org/doc/75330},
volume = {48},
year = {1998},
}

TY - JOUR
AU - El-Fallah, O.
AU - Kellay, Karim
TI - Sous-espaces biinvariants pour certains shifts pondérés
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 5
SP - 1543
EP - 1558
AB - Nous étudions les sous-espaces biinvariants du shift usuel sur les espaces à poids\begin{}L^2_\omega =\Big \lbrace f\in L^2({\Bbb T}):\Vert f\Vert _\omega = \Big (\sum _{n\in {\Bbb Z}} \vert f(n)\vert \omega ^2(n)\Big )^{1/2}&lt; +\infty \Big \rbrace ,\end{}où $\omega (n)=(1+n)^p, n\ge 0$ et ${\omega (n)\over (1+\vert n\vert )^p}{\mathrel {\mathop {\hspace{0.0pt}n\rightarrow -\infty }\limits ^{\rightarrow }}} +\infty $, pour un certain entier $p\ge 1$. Nous montrons que la trace analytique de tout sous-espace biinvariant est de type spectral, lorsque $\sum _{n\ge 2}{1\over n\log \omega (-n)}$ diverge, mais que ceci n’est plus valable lorsque $\sum _{n\ge 2}{1\over n\log \omega (-n)}$ converge.
LA - fre
KW - biinvariant subspace; hyperfunction; Carleson set; weighted shifts; weight asymmetry
UR - http://eudml.org/doc/75330
ER -

References

top
  1. [A1] A. ATZMON, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math., 144 (1980), 27-63. Zbl0449.47007MR81c:47007
  2. [A2] A. ATZMON, On the existence of hyperinvariants subspaces, J. Op. Theory, 11 (1984), 3-40. Zbl0583.47009MR85k:47005
  3. [B] V.I. BURENKOV, On the approximation of functions in Sobolev spaces by functions of compact support in an arbitrary open set, Soviet Math. Dokl., 13 (1972), 60-64. Zbl0253.46066MR52 #14964
  4. [C] L. CARLESON, Sets of uniqueness of functions regular in the unit circle, Acta Math., 87 (1952), 325-345. Zbl0046.30005MR14,261a
  5. [D] P.L. DUREN, Theory of Hp Spaces, Pure and Applied Math., Academic Press, New York-London, 1970. Zbl0215.20203MR42 #3552
  6. [Dy] E.M. DYNKIN, Free interpolation set for Hölder classes, Mat. Sbornik, 109 (1979), 107-128. Zbl0407.30024
  7. [EZR] J. ESTERLE, M. ZARRABI and M. RAJOELINA, On contractions with spectrum contained in the Cantor set, Math. Proc. Camb. Phil. Soc., 177 (1995), 339-343. Zbl0830.47001MR95h:47021
  8. [E1] J. ESTERLE, Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A+, J. für reine ang. Math., 450 (1994), 43-82. Zbl0791.46026
  9. [E2] J. ESTERLE, Uniqueness, strong forms of uniqueness and negative powers of contractions, Banach Center Publications, 30 (1994), 1-19. 
  10. [E3] J. ESTERLE, Closed ideals in certain Beurling algebras and synthesis of hyperdistributions, Studia Math., 120 (1996), 113-153. Zbl0864.46025MR97i:46093
  11. [E4] J. ESTERLE, Singular inner functions and biinvariant subspaces for dissymetric weighted shifts, J. Func. Analysis, 144 (1997), 64-104. Zbl0938.47003MR98d:47021
  12. [K] J.P. KAHANE, Séries de Fourier absolument convergentes, Ergebnisse der Maths, 50, Berlin-Heidelberg-New York, Springer, 1970. Zbl0195.07602MR43 #801
  13. [Ke] K. KELLAY, Contractions et hyperdistributions à spectre de Carleson, J. London. Math. Soc., to appear. Zbl0945.47029
  14. [Kh] L. KHANIN, Spectral synthesis of ideals in algebras of functions having generalized derivatives, Russian Math. Surveys, 39 (1984), 167-168. Zbl0567.46025MR85d:46072
  15. [Ko1] B.I. KORENBLUM, Invariant subspace of the shift operator in weighted Hilbert space, Mat. Sbornik, 89 (1972), 112-138. Zbl0257.46074
  16. [Ko2] B.I. KORENBLUM, Invariant subspaces for a shift operator in some weighted Hilbert sequence spaces, Soviet Math. Dokl., 13 (1972), 272-275. Zbl0249.47023MR47 #5621
  17. [Ko3] B.I. KORENBLUM, Functions holomorphic in a disc and smooth in its closure, Soviet Math. Dokl., 12 (1971), 1312-1315. Zbl0235.30036
  18. [N] N.K. NIKOLSKII, Lectures on the shift operator IV, J. Soviet Math., 16 (1981), 1118-1139. Zbl0458.47028
  19. [S] F.A. SHAMOYAN, Closed ideals in algebras of functions analytic in the disc and smooth up to its boundary, Mat. Sbornik, 79 (1994), 425-445. Zbl0840.30030MR94m:46087
  20. [TW] B.A. TAYLOR and D.L. WILLIAMS, Ideals in rings of analytic functions with smooth boundary values, Can. J. Math., 22 (1970), 1266-1283. Zbl0204.44302MR42 #7905
  21. [Z] M. ZARRABI, Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier, 43-1 (1993), 251-263. Zbl0766.47002MR94b:47048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.