Finite rank elements in semisimple Banach algebras

Matej Brešar; Peter Šemrl

Studia Mathematica (1998)

  • Volume: 128, Issue: 3, page 287-298
  • ISSN: 0039-3223

Abstract

top
Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.

How to cite

top

Brešar, Matej, and Šemrl, Peter. "Finite rank elements in semisimple Banach algebras." Studia Mathematica 128.3 (1998): 287-298. <http://eudml.org/doc/216487>.

@article{Brešar1998,
abstract = {Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.},
author = {Brešar, Matej, Šemrl, Peter},
journal = {Studia Mathematica},
keywords = {rank; semisimple Banach algebra; decomposability; indecomposable elements},
language = {eng},
number = {3},
pages = {287-298},
title = {Finite rank elements in semisimple Banach algebras},
url = {http://eudml.org/doc/216487},
volume = {128},
year = {1998},
}

TY - JOUR
AU - Brešar, Matej
AU - Šemrl, Peter
TI - Finite rank elements in semisimple Banach algebras
JO - Studia Mathematica
PY - 1998
VL - 128
IS - 3
SP - 287
EP - 298
AB - Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.
LA - eng
KW - rank; semisimple Banach algebra; decomposability; indecomposable elements
UR - http://eudml.org/doc/216487
ER -

References

top
  1. [1] J. C. Alexander, Compact Banach algebras, Proc. London Math. Soc. 18 (1968), 1-18. Zbl0184.16502
  2. [2] B. Aupetit and T. Mouton, Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100. 
  3. [3] B. Aupetit and T. Mouton, Trace and determinant in Banach algebras, ibid. 121 (1996), 115-136. 
  4. [4] M. Brešar and P. Šemrl, Derivations mapping into the socle, Math. Proc. Cambridge Philos. Soc. 120 (1996), 339-346. 
  5. [5] J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Vol. 1, Academic Press, Boston, 1988. Zbl0652.46050
  6. [6] A. A. Jafarian and A. R. Sourour, Spectrum preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. Zbl0589.47003
  7. [7] B. V. Limaye, A spectral characterization of operators having rank k, Linear Algebra Appl. 143 (1991), 57-66. Zbl0721.47026
  8. [8] T. Mouton and H. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219. Zbl0814.46035
  9. [9] P. Nylen and L. Rodman, Approximation numbers and Yamamoto's theorem in Banach algebras, Integral Equations Operator Theory 13 (1990), 728-749. Zbl0731.46028
  10. [10] C. E. Rickart, General Theory of Banach Algebras, The University Series in Higher Mathematics, D. van Nostrand, 1960. Zbl0095.09702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.