Sums of idempotents and a lemma of N. J. Kalton

Graham Allan

Studia Mathematica (1996)

  • Volume: 121, Issue: 2, page 185-192
  • ISSN: 0039-3223

Abstract

top
A lemma of Gelfand-Hille type is proved. It is used to give an improved version of a result of Kalton on sums of idempotents.

How to cite

top

Allan, Graham. "Sums of idempotents and a lemma of N. J. Kalton." Studia Mathematica 121.2 (1996): 185-192. <http://eudml.org/doc/216350>.

@article{Allan1996,
abstract = {A lemma of Gelfand-Hille type is proved. It is used to give an improved version of a result of Kalton on sums of idempotents.},
author = {Allan, Graham},
journal = {Studia Mathematica},
keywords = {lemma of Gelfand-Hille type; sums of idempotents},
language = {eng},
number = {2},
pages = {185-192},
title = {Sums of idempotents and a lemma of N. J. Kalton},
url = {http://eudml.org/doc/216350},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Allan, Graham
TI - Sums of idempotents and a lemma of N. J. Kalton
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 2
SP - 185
EP - 192
AB - A lemma of Gelfand-Hille type is proved. It is used to give an improved version of a result of Kalton on sums of idempotents.
LA - eng
KW - lemma of Gelfand-Hille type; sums of idempotents
UR - http://eudml.org/doc/216350
ER -

References

top
  1. [1] G. R. Allan, Power-bounded elements in a Banach algebra and a theorem of Gelfand, in: Conf. on Automatic Continuity and Banach Algebras (Canberra, January 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Canberra, 1989, 1-12. 
  2. [2] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. Zbl0705.46021
  3. [3] R. P. Boas, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201
  4. [4] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229. Zbl0067.35002
  5. [5] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. Zbl0207.44802
  6. [6] J. Esterle, Quasi-multipliers, representations of H , and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer, 1983, 66-162. 
  7. [7] I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50. Zbl67.0407.02
  8. [8] E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. Zbl0061.25305
  9. [9] N. J. Kalton, Sums of idempotents in Banach algebras, Canad. Math. Bull. 31 (1988), 448-451. Zbl0679.46033
  10. [10] Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
  11. [11] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. Zbl0101.09503
  12. [12] G. E. Shilov, On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72 (1950), 641-644 (in Russian). Zbl0039.33601
  13. [13] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci. Warszawa, 1994, 369-385. Zbl0822.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.