Some classical function systems in separable Orlicz spaces
Studia Mathematica (1996)
- Volume: 121, Issue: 2, page 193-205
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFinet, C., and Tkebuchava, G.. "Some classical function systems in separable Orlicz spaces." Studia Mathematica 121.2 (1996): 193-205. <http://eudml.org/doc/216351>.
@article{Finet1996,
abstract = {The boundedness of (sub)sequences of partial Fourier and Fourier-Walsh sums in subspaces of separable Orlicz spaces is studied. The boundedness of the shift operator and Paley function with respect to the Haar system is also investigated. These results are applied to get the analogues of the classical theorems on basicness of the trigonometric and Walsh systems in nonreflexive separable Orlicz spaces.},
author = {Finet, C., Tkebuchava, G.},
journal = {Studia Mathematica},
keywords = {Fourier; Fourier-Walsh series; Paley function; Haar system; separable Orlicz space; Walsh series; Haar series; bases in Orlicz spaces; Walsh-Fourier series; Walsh system; Haar shift operator; Haar-Paley function; maximal function; Haar-Fourier series},
language = {eng},
number = {2},
pages = {193-205},
title = {Some classical function systems in separable Orlicz spaces},
url = {http://eudml.org/doc/216351},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Finet, C.
AU - Tkebuchava, G.
TI - Some classical function systems in separable Orlicz spaces
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 2
SP - 193
EP - 205
AB - The boundedness of (sub)sequences of partial Fourier and Fourier-Walsh sums in subspaces of separable Orlicz spaces is studied. The boundedness of the shift operator and Paley function with respect to the Haar system is also investigated. These results are applied to get the analogues of the classical theorems on basicness of the trigonometric and Walsh systems in nonreflexive separable Orlicz spaces.
LA - eng
KW - Fourier; Fourier-Walsh series; Paley function; Haar system; separable Orlicz space; Walsh series; Haar series; bases in Orlicz spaces; Walsh-Fourier series; Walsh system; Haar shift operator; Haar-Paley function; maximal function; Haar-Fourier series
UR - http://eudml.org/doc/216351
ER -
References
top- [1] Bari N. K., and Stechkin S. B., Best approximation and differential properties of two conjugate functions, Trudy Moskov. Mat. Obshch. 5 (1956), 483-522 (in Russian).
- [2] Bloom S., and Kerman R., Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal function, Studia Math. 110 (1994), 149-167. Zbl0813.42014
- [3] Burkholder D., Distribution function inequalities for martingales, Ann. Probab. 11 (1973), 19-42. Zbl0301.60035
- [4] Burkholder D., Davis B., and Gundy R., Integral inequalities for convex functions of operators on martingales, in: Proc. Sixth Berkeley Sympos. Math. Statist. Probab., Vol. II, Univ. of California Press, 1972, 223-240. Zbl0253.60056
- [5] Ciesielski Z., and Kwapień S., Some properties of the Haar, Walsh-Paley, Franklin and the bounded polygonal orthonormal bases in spaces, Comment. Math., Tomus Specialis in Honorem L. Orlicz, 1979, part 2, 37-42. Zbl0433.46012
- [6] Fridli S., Ivanov V., and Simon P., Representation of functions in the space φ(L) by Vilenkin series, Acta Sci. Math. (Szeged) 48 (1985), 143-154. Zbl0589.42018
- [7] Gogatishvili A., Kokilashvili V., and Krbec M., Maximal functions, φ(L) classes and Carleson measures, Proc. A. Razmadze Math. Inst. 102 (1993), 85-97. Zbl0815.42010
- [8] Kashin B. S., and Saakjan A. A., Orthogonal Series, Amer. Math. Soc., Providence, 1989.
- [9] Kolmogoroff A. N., Sur les fonctions harmoniques conjuguées et les séries de Fourier, Fund. Math. 7 (1927), 25-28.
- [10] Komissarov A. A., Equivalence of Haar and Franklin systems in some function spaces, Sibirsk. Mat. Zh. 23 (5) (1982), 115-126 (in Russian). Zbl0508.46017
- [11] Konyagin S. V., On subsequences of partial Fourier-Walsh sums, Mat. Zametki 54 (4) (1993), 69-75 (in Russian).
- [12] Krasnosel'skiĭ M. A., and Rutickiĭ Ya. B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [13] Lozinski S., On convergence and summability of Fourier series and interpolation processes, Mat. Sb. 14 (3) (1944), 175-268. Zbl0060.18301
- [14] Paley R. E. A. C., A remarkable system of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279. Zbl0005.24901
- [15] Riesz M., Sur les fonctions conjuguées, Math. Z. 27 (1927), 218-244. Zbl53.0259.02
- [16] Ryan R., Conjugate functions in Orlicz spaces, Pacific J. Math. 13 (1963), 1371-1377. Zbl0133.37301
- [17] Tkebuchava G. E., On unconditional bases in nonreflexive function spaces, Soobshch. Akad. Nauk Gruzin. SSR 101 (2) (1981), 297-299 (in Russian); English transl. in: Fifteen Papers on Functional Analysis, Amer. Math. Soc. Transl. (2) 124, 1984, 17-19. Zbl0455.46026
- [18] Tsereteli O. P., On the integrability of conjugate functions, Trudy Tbilissk. Mat. Inst. Razmadze Akad. Nauk. Gruzin. SSR 45 (1973), 149-168 (in Russian).
- [19] Watari C., Mean convergence of Walsh-Fourier series, Tôhoku Math. J. 16 (1964), 183-188. Zbl0146.08901
- [20] Zygmund A., Trigonometric Series, Vols. I, II, Cambridge Univ. Press, 1968.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.