Semi-Browder operators and perturbations

Vladimir Rakočević

Studia Mathematica (1997)

  • Volume: 122, Issue: 2, page 131-137
  • ISSN: 0039-3223

Abstract

top
An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].

How to cite

top

Rakočević, Vladimir. "Semi-Browder operators and perturbations." Studia Mathematica 122.2 (1997): 131-137. <http://eudml.org/doc/216365>.

@article{Rakočević1997,
abstract = {An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].},
author = {Rakočević, Vladimir},
journal = {Studia Mathematica},
keywords = {ascent; descent; semi-Fredholm; semi-Browder operators; commuting Riesz operator perturbations; perturbations},
language = {eng},
number = {2},
pages = {131-137},
title = {Semi-Browder operators and perturbations},
url = {http://eudml.org/doc/216365},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Rakočević, Vladimir
TI - Semi-Browder operators and perturbations
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 2
SP - 131
EP - 137
AB - An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].
LA - eng
KW - ascent; descent; semi-Fredholm; semi-Browder operators; commuting Riesz operator perturbations; perturbations
UR - http://eudml.org/doc/216365
ER -

References

top
  1. [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974. Zbl0299.46062
  2. [2] A. S. Faĭnshteĭn, On measures of noncompactness of linear operators and analogs of the minimum modulus for semi-Fredholm operators, Spektr. Teor. Oper. 6, Èlm, Baku, 1985, 182-195 (in Russian). 
  3. [3] M. A. Goldman and S. N. Kračkovskiĭ, Behaviour of the space of zero elements with finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221 (1975), 532-534 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 370-373. 
  4. [4] M. González and A. Martinón, Operational quantities derived from the norm and measures of non-compactness, Proc. Roy. Irish Acad. Sect. A 91 (1991), 63-70. 
  5. [5] M. González and A. Martinón, Operational quantities characterizing semi-Fredholm operators, Studia Math. 114 (1995), 13-27. 
  6. [6] S. Grabiner, Ascent, descent, and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), 79-80. Zbl0392.47002
  7. [7] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988. Zbl0636.47001
  8. [8] M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 186 (1972), 35-47. 
  9. [9] V. Kordula, V. Müller and V. Rakočević, On the semi-Browder spectrum, Studia Math., to appear. Zbl0874.47007
  10. [10] H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297. Zbl0318.47008
  11. [11] D. Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math. Soc. 74 (1968), 246-248. Zbl0157.45103
  12. [12] A. Martinón, Cantidades operacionales en teoría de Fredholm, Doctoral thesis, University of La Laguna, 1989. 
  13. [13] V. Müller, The inverse spectral radius formula and removability of spectrum, Časopis Pěst. Mat. 108 (1983), 412-415. Zbl0567.46023
  14. [14] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. Zbl0602.47003
  15. [15] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825. Zbl0854.47008
  16. [16] M. Schechter, On perturbations of essential spectra, J. London Math. Soc. (2) 1 (1969), 343-347. Zbl0192.47403
  17. [17] H.-O. Tylli, On the asymptotic behaviour of some quantities related to semiFredholm operators, J. London Math. Soc. (2) 31 (1985), 340-348. 
  18. [18] H.-O. Tylli, On semi-Fredholm operators, Calkin algebras and some related quantities, Academic dissertation, Helsinki, Department of Mathematics, University of Helsinki, 1986. 
  19. [19] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), 137-146. Zbl0621.47016
  20. [20] J. Zemánek, The semi-Fredholm radius of a linear operator, Bull. Polish Acad. Sci. Math. 32 (1984), 67-76. Zbl0583.47016
  21. [21] J. Zemánek, Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234. Zbl0556.47008
  22. [22] J. Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.