# Semi-Browder operators and perturbations

Studia Mathematica (1997)

- Volume: 122, Issue: 2, page 131-137
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topRakočević, Vladimir. "Semi-Browder operators and perturbations." Studia Mathematica 122.2 (1997): 131-137. <http://eudml.org/doc/216365>.

@article{Rakočević1997,

abstract = {An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].},

author = {Rakočević, Vladimir},

journal = {Studia Mathematica},

keywords = {ascent; descent; semi-Fredholm; semi-Browder operators; commuting Riesz operator perturbations; perturbations},

language = {eng},

number = {2},

pages = {131-137},

title = {Semi-Browder operators and perturbations},

url = {http://eudml.org/doc/216365},

volume = {122},

year = {1997},

}

TY - JOUR

AU - Rakočević, Vladimir

TI - Semi-Browder operators and perturbations

JO - Studia Mathematica

PY - 1997

VL - 122

IS - 2

SP - 131

EP - 137

AB - An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].

LA - eng

KW - ascent; descent; semi-Fredholm; semi-Browder operators; commuting Riesz operator perturbations; perturbations

UR - http://eudml.org/doc/216365

ER -

## References

top- [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974. Zbl0299.46062
- [2] A. S. Faĭnshteĭn, On measures of noncompactness of linear operators and analogs of the minimum modulus for semi-Fredholm operators, Spektr. Teor. Oper. 6, Èlm, Baku, 1985, 182-195 (in Russian).
- [3] M. A. Goldman and S. N. Kračkovskiĭ, Behaviour of the space of zero elements with finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221 (1975), 532-534 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 370-373.
- [4] M. González and A. Martinón, Operational quantities derived from the norm and measures of non-compactness, Proc. Roy. Irish Acad. Sect. A 91 (1991), 63-70.
- [5] M. González and A. Martinón, Operational quantities characterizing semi-Fredholm operators, Studia Math. 114 (1995), 13-27.
- [6] S. Grabiner, Ascent, descent, and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), 79-80. Zbl0392.47002
- [7] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988. Zbl0636.47001
- [8] M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 186 (1972), 35-47.
- [9] V. Kordula, V. Müller and V. Rakočević, On the semi-Browder spectrum, Studia Math., to appear. Zbl0874.47007
- [10] H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297. Zbl0318.47008
- [11] D. Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math. Soc. 74 (1968), 246-248. Zbl0157.45103
- [12] A. Martinón, Cantidades operacionales en teoría de Fredholm, Doctoral thesis, University of La Laguna, 1989.
- [13] V. Müller, The inverse spectral radius formula and removability of spectrum, Časopis Pěst. Mat. 108 (1983), 412-415. Zbl0567.46023
- [14] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. Zbl0602.47003
- [15] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825. Zbl0854.47008
- [16] M. Schechter, On perturbations of essential spectra, J. London Math. Soc. (2) 1 (1969), 343-347. Zbl0192.47403
- [17] H.-O. Tylli, On the asymptotic behaviour of some quantities related to semiFredholm operators, J. London Math. Soc. (2) 31 (1985), 340-348.
- [18] H.-O. Tylli, On semi-Fredholm operators, Calkin algebras and some related quantities, Academic dissertation, Helsinki, Department of Mathematics, University of Helsinki, 1986.
- [19] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), 137-146. Zbl0621.47016
- [20] J. Zemánek, The semi-Fredholm radius of a linear operator, Bull. Polish Acad. Sci. Math. 32 (1984), 67-76. Zbl0583.47016
- [21] J. Zemánek, Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234. Zbl0556.47008
- [22] J. Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.