On the semi-Browder spectrum

Vladimír Kordula; Vladimír Müller; Vladimir Rakočević

Studia Mathematica (1997)

  • Volume: 123, Issue: 1, page 1-13
  • ISSN: 0039-3223

Abstract

top
An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.

How to cite

top

Kordula, Vladimír, Müller, Vladimír, and Rakočević, Vladimir. "On the semi-Browder spectrum." Studia Mathematica 123.1 (1997): 1-13. <http://eudml.org/doc/216378>.

@article{Kordula1997,
abstract = {An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.},
author = {Kordula, Vladimír, Müller, Vladimír, Rakočević, Vladimir},
journal = {Studia Mathematica},
keywords = {upper (lower) semi-Browder; upper (lower) semi-Fredholm; finite ascent (descent); -tuples of commuting operators; joint spectrum; (essentially) semiregular operators},
language = {eng},
number = {1},
pages = {1-13},
title = {On the semi-Browder spectrum},
url = {http://eudml.org/doc/216378},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Kordula, Vladimír
AU - Müller, Vladimír
AU - Rakočević, Vladimir
TI - On the semi-Browder spectrum
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 1
SP - 1
EP - 13
AB - An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.
LA - eng
KW - upper (lower) semi-Browder; upper (lower) semi-Fredholm; finite ascent (descent); -tuples of commuting operators; joint spectrum; (essentially) semiregular operators
UR - http://eudml.org/doc/216378
ER -

References

top
  1. [1] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314. Zbl0375.47001
  2. [2] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974. Zbl0299.46062
  3. [3] R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413. Zbl0662.47003
  4. [4] S. Grabiner, Ascent, descent, and compact perturbations, ibid. 71 (1978), 79-80. 
  5. [5] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. Zbl0477.47013
  6. [6] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, 1988. Zbl0636.47001
  7. [7] R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253-256. Zbl0393.47001
  8. [8] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. Zbl0090.09003
  9. [9] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, Proc. Roy. Irish Acad., to appear. Zbl0880.47005
  10. [10] V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc., to appear. Zbl0861.47008
  11. [11] V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128. Zbl0857.47001
  12. [12] H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297. Zbl0318.47008
  13. [13] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
  14. [14] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147. Zbl0857.47002
  15. [15] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisé dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. Zbl0742.47001
  16. [16] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. Zbl0845.47005
  17. [17] M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86. Zbl0498.47009
  18. [18] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. Zbl0602.47003
  19. [19] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. Zbl0794.47003
  20. [20] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825. Zbl0854.47008
  21. [21] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1996), 131-137. Zbl0892.47015
  22. [22] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and corresponding spectra, in: Proc. Conf. in Priština, University of Priština, 1994, 79-89. Zbl0930.47006
  23. [23] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. Zbl0721.47005
  24. [24] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. 87 (1987), 137-146. Zbl0621.47016
  25. [25] W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. Zbl0426.47002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.