Isoperimetric problem for uniform enlargement

S. Bobkov

Studia Mathematica (1997)

  • Volume: 123, Issue: 1, page 81-95
  • ISSN: 0039-3223

Abstract

top
We consider an isoperimetric problem for product measures with respect to the uniform enlargement of sets. As an example, we find (asymptotically) extremal sets for the infinite product of the exponential measure.

How to cite

top

Bobkov, S.. "Isoperimetric problem for uniform enlargement." Studia Mathematica 123.1 (1997): 81-95. <http://eudml.org/doc/216380>.

@article{Bobkov1997,
abstract = {We consider an isoperimetric problem for product measures with respect to the uniform enlargement of sets. As an example, we find (asymptotically) extremal sets for the infinite product of the exponential measure.},
author = {Bobkov, S.},
journal = {Studia Mathematica},
keywords = {isoperimetric inequalities; uniform enlargement; isoperimetric problem for product measures},
language = {eng},
number = {1},
pages = {81-95},
title = {Isoperimetric problem for uniform enlargement},
url = {http://eudml.org/doc/216380},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Bobkov, S.
TI - Isoperimetric problem for uniform enlargement
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 1
SP - 81
EP - 95
AB - We consider an isoperimetric problem for product measures with respect to the uniform enlargement of sets. As an example, we find (asymptotically) extremal sets for the infinite product of the exponential measure.
LA - eng
KW - isoperimetric inequalities; uniform enlargement; isoperimetric problem for product measures
UR - http://eudml.org/doc/216380
ER -

References

top
  1. [AM] D. Amir and V. D. Milman, Unconditional and symmetric sets in n-dimensional normed spaces, Israel J. Math. 37 (1980), 3-20. Zbl0445.46011
  2. [B1] S. G. Bobkov, Isoperimetric problem for uniform enlargement, Center for Stochastic Processes, Dept. of Statistics, Univ. of North Carolina at Chapel Hill, Tech. Report 394 (1993). 
  3. [B2] S. G. Bobkov, Extremal properties of half-spaces for log-concave distributions, Ann. Probab. 24 (1996), 35-48. Zbl0859.60048
  4. [B3] S. G. Bobkov, A functional form of the isoperimetric inequality for the Gaussian measure, J. Funct. Anal. 135 (1996), 39-49. Zbl0838.60013
  5. [B4] S. G. Bobkov, Isoperimetric inequalities for distributions of exponential type, Ann. Probab. 22 (1994), 978-994. Zbl0808.60023
  6. [BH1] S. G. Bobkov and C. Houdré, A characterization of Gaussian measures via the isoperimetric property of half-spaces, Zap. Nauch. Semin. SPOMI RAN 228 (1996), 31-38 (in Russian); English transl.: J. Math. Sci., to appear. 
  7. [BH2] S. G. Bobkov and C. Houdré, Some connections between Sobolev-type inequalities and isoperimetry, Mem. Amer. Math. Soc., to appear. 
  8. [BH3] S. G. Bobkov and C. Houdré, Isoperimetric constants for product probability measures, Ann. Probab., to appear. Zbl0878.60013
  9. [Bor] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-211. Zbl0292.60004
  10. [BZ] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer, 1988; transl. from the Russian edition, Nauka, Moscow, 1980. 
  11. [H] L. H. Harper, Optimal numbering and isoperimetric problems on graphs, J. Combin. Theor. 1 (1966), 385-393. Zbl0158.20802
  12. [Led] M. Ledoux, Isoperimetry and Gaussian analysis, in: Ecole d'été de Probabilités de Saint-Flour, 1994, Lecture Notes in Math., Springer, to appear. 
  13. [Lev] P. Lévy, Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951. Zbl0043.32302
  14. [Sch] E. Schmidt, Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, II, Math. Nachr. 1 (1948), 81-157; 2 (1949), 171-244. 
  15. [ST] V. N. Sudakov and B. S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures, J. Soviet Math. 9 (1978), 9-18; transl. from Zap. Nauchn. Sem. LOMI 41 (1974), 14-24 (in Russian). 
  16. [Tal1] M. Talagrand, An isoperimetric theorem on the cube and the Khinchine-Kahane inequalities, Proc. Amer. Math. Soc. 104 (1988), 905-909. Zbl0691.60015
  17. [Tal2] M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, in: Lecture Notes in Math. 1469, Springer, 1991, 94-124. Zbl0818.46047
  18. [Tal3] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. IHES 81 (1995), 73-205. Zbl0864.60013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.