Autour de l'inégalité de Brunn-Minkowski
Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)
- Volume: 12, Issue: 2, page 127-178
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBarthe, Franck. "Autour de l'inégalité de Brunn-Minkowski." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.2 (2003): 127-178. <http://eudml.org/doc/73601>.
@article{Barthe2003,
author = {Barthe, Franck},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Brunn-Minkowski inequality; Brascamp-Lieb inequality; measure transport},
language = {fre},
number = {2},
pages = {127-178},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Autour de l'inégalité de Brunn-Minkowski},
url = {http://eudml.org/doc/73601},
volume = {12},
year = {2003},
}
TY - JOUR
AU - Barthe, Franck
TI - Autour de l'inégalité de Brunn-Minkowski
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 2
SP - 127
EP - 178
LA - fre
KW - Brunn-Minkowski inequality; Brascamp-Lieb inequality; measure transport
UR - http://eudml.org/doc/73601
ER -
References
top- [1] Artstein ( S. ) , Ball ( K. ), Barthe ( F.), Naor ( A.).— Entropy growth for sums of independent random variables. Submitted, 2002.
- [2] Artstein ( S. ) , Ball ( K. ), Barthe ( F.), Naor ( A.). — More on entropy production. Preprint, 2002.
- [3] Bakry ( D.) , Ledoux ( M.). - Lévy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math. , 123, p. 259-281 (1996). Zbl0855.58011MR1374200
- [4] Ball ( K.) , Barthe ( F.), Naor ( A.). — Entropy jumps in the presence of a spectral gap. Duke Math. J., 119, p. 41-63 (2003). Zbl1036.94003MR1991646
- [5] Ball ( K.M. ).— Cube slicing in R×. Proc. Amer. Math. Soc., 97, p. 465-473 (1986). Zbl0601.52005MR840631
- [6] Ball ( K.M. ). — Logarithmically concave functions and sections of convex sets in R×. Studia Math., 88, p. 69-84 (1988). Zbl0642.52011MR932007
- [7] Ball ( K.M. ). — Volumes of sections of cubes and related problems . In J. Lindenstrauss and V. D. Milman, editors, Israel seminar on Geometric Aspects of Functional Analysis, number 1376 in Lectures Notes in Math. Springer-Verlag , 1989. Zbl0674.46008MR1008726
- [8] Ball ( K.M. ).— Volume ratio and a reverse isoperimetric inequality. J. London Math. Soc., 44(2), p. 351-359 (1991). Zbl0694.46010MR1136445
- [9] Ball ( K.M. ). — Mahler's conjecture and wavelets . Discrete Comput. Geom., 13(3-4), p. 271-277 (1995). Zbl0824.52005MR1318777
- [10] Ball ( K.M. ). — Some remarks on the geometry of convex sets. In Geometric Aspects of Functional Analysis, number 1317 in LMN, p. 224-231. Springer (1998). Zbl0651.52010MR950983
- [11] Barron ( A. ) , Johnson ( O.).— Fisher information inequalities and the central limit theorem. Preprint, arXiv, math. PR/0111020. MR2128239
- [12] Barron ( A.R. ).— Entropy and the central limit theorem . Ann. Probab., 14, p. 336-342 (1986). Zbl0599.60024MR815975
- [13] Barthe ( F. ).— Mesures unimodales et sections des boules Bnp. C. R. Acad. Sci. Paris Sér. I Math. , 321, p. 865-868 (1995). Zbl0876.46011MR1355843
- [14] Barthe ( F. ). — Inégalités de Brascamp-Lieb et convexité . C. R. Acad. Sci. Paris Sér. I Math., 324, p. 885-888 (1997). Zbl0904.26011MR1450443
- [15] Barthe ( F. ). — Inégalités fonctionnelles et géométriques obtenues par transport des mesures. Thèse de Doctorat, Université de Marne-la-Vallée, 1997.
- [16] Barthe ( F. ). — An extremal property of the mean width of the simplex . Math. Ann., 310, p. 685-693 (1998). Zbl0901.52013MR1619740
- [17] Barthe ( F. ). - On a reverse form of the Brascamp-Lieb inequality. Invent. Math., 134, p. 335-361 (1998). Zbl0901.26010MR1650312
- [18] Barthe ( F. ). — Optimal Young's inequality and its converse, a simple proof. Geom. Funct. Anal., 8, p. 234-242 (1998). Zbl0902.26009MR1616143
- [19] Barthe ( F. ). - Restricted Prékopa-Leindler inequality . Pacific J. Math., 189, p. 211-222 (1999). Zbl0935.26012MR1696120
- [20] Barthe ( F. ).— Extremal properties of central half-spaces for product measures. J. Funct. Anal., 182, p. 81-107 (2001). Zbl0984.28003MR1829243
- [21] Barthe ( F. ). - An isoperimetric result for the Gaussian measure and unconditional sets. Bull. London Math. Soc., 33, p. 408-416 (2001). Zbl1025.60008MR1832552
- [22] Barthe ( F. ). — Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse, 10(3), p. 393-404 (2001). Zbl1008.60007MR1923685
- [23] Barthe ( F. ). - Infinite dimensional isoperimetric inequalities in product spaces with the uniform distance. Submitted, 2002 .
- [24] Barthe ( F. ).— Log-concave and spherical models in isoperimetry. Geom. Funct. Anal., 12, p. 32-55 (2002). Zbl0999.60017MR1904555
- [25] Barthe ( F. ), Cordero-Erausquin ( D.), Fradelizi ( M.). - Shift inequalities of Gaussian type and norms of barycenters. Studia. Math. , 146(3), p. 245-259 (2001). Zbl0984.60024MR1853445
- [26] Barthe ( F. ), Csornyei ( M.), Naor ( A.). - A note on simultaneous polar and Cartesian decomposition. Geometric Aspects of Functional Analysis, to appear. Zbl1036.52004MR2182664
- [27] Barthe ( F. ), Fradelizi ( M.), Maurey ( B.). - A short solution to the Busemann-Petty problem. Positivity, 3, p. 95-100 (1999). Zbl0924.44001MR1675467
- [28] Barthe ( F. ), Koldobsky ( A.).— Extremal slabs in the cube and the Laplace transform. Adv. Math., 174, p. 89-114 (2003). Zbl1037.52006MR1959893
- [29] Barthe ( F. ), Maurey ( B.). — Somes remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré, Probabilités et Statistiques, 36(4), p. 419-434 (2000). MR1785389
- [30] Barthe ( F. ), Naor ( A.). - Hyperplane projections of the unit ball of lnp. Discrete Comput. Geom, 27(2), p. 215-226 (2002). Zbl0999.52003MR1880938
- [31] Beckner ( W.). — Inequalities in Fourier analysis . Ann. of Math., 102, p. 159-182 (1975). Zbl0338.42017MR385456
- [32] Bobkov ( S.G. ). — Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24(1), p. 35-48 (1996). Zbl0859.60048MR1387625
- [33] Bobkov ( S.G. ). - A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal, 135, p. 39-49 (1996). Zbl0838.60013MR1367623
- [34] Bobkov ( S.G. ).— An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab., 25(1), p. 206-214 (1997). Zbl0883.60031MR1428506
- [35] Bobkov ( S.G. ). - Isoperimetric problem for uniform enlargement . Studia Math., 123(1), p. 81-95 (1997). Zbl0873.60003MR1438305
- [36] Bobkov ( S.G. ). - Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab., 27(4), p. 1903-1921 (1999 ). Zbl0964.60013MR1742893
- [37] Bobkov ( S.G. ). - The size of singular component and shift inequalities. Ann. Probab., 27(1), p. 416-431 (1999). Zbl0946.60008MR1681090
- [38] Bobkov ( S.G. ), Houdré ( C.). — Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 228, p. 31-38 (1996). (Russian). Zbl0924.60009
- [39] Bobkov ( S.G. ) , Houdré ( C.). - Isoperimetric constants for product probability measures. Ann. Probab., 25(1), p. 184-205 (1997). Zbl0878.60013MR1428505
- [40] Bobkov ( S.G. ) , Houdré ( C.). - Weak dimension-free concentration of measure . Bernoulli, 6(4), p. 621-632 (2000). Zbl0965.60007MR1777687
- [41] Bobkov ( S.G. ), Ledoux ( M.). — From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10(5), p. 1028-1052 (2000). Zbl0969.26019MR1800062
- [42] Bollobás ( B.), Leader ( I.).— Edge-isoperimetric inequalities in the grid. Combinatorica, 11, p. 299-314 (1991). Zbl0755.05045MR1137765
- [43] Borell ( C. ).— The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30, p. 207-216 (1975). Zbl0292.60004MR399402
- [44] Borell ( C. ). — Convex functions in d-space. Period. Math. Hungar., 6, p. 111-136 (1975). Zbl0274.28009MR404559
- [45] Bourgain ( J.). - On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal., 1, p. 1-13 (1991). Zbl0752.52001MR1091609
- [46] Bourgain ( J. ). — On the distribution of polynomials on high dimensional convex sets. In Geometric Aspects of Functional Analysis, number 1469 in Lecture Notes in Math , p. 127-137. Sringer-Verlag , 1991. Zbl0773.46013MR1122617
- [47] Bourgain ( J.), Milman ( V.D.).— New volume ratio properties for convex symmetric bodies in R×. Invent. Math., 88, p. 319-340 (1987). Zbl0617.52006MR880954
- [48] Brascamp ( H.J.), Lieb ( E.H.). - Best constants in Young's inequality, its converse and its generalization to more than three functions . Adv. Math., 20, p. 151-173 (1976). Zbl0339.26020MR412366
- [49] Brascamp ( H.J.), Lieb ( E.H.). - On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log-concave functions, and with applications to the diffusion equation. J. Funct. Anal., 22, p. 366-389 (1976). Zbl0334.26009MR450480
- [50] Brenier ( Y.).— Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math., 305, p. 805-808 (1987). Zbl0652.26017MR923203
- [51] Brenier ( Y.). - Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math, 44 (1991). Zbl0738.46011MR1100809
- [52] Busemann ( H.). - A theorem on convex bodies of Brunn-Minkowski type. Amer. J. Math., 71, p. 743-762 (1949). Zbl0038.10301MR31762
- [53] Caetano ( A.M.). — Weyl numbers in sequence spaces and sections of unit balls. J. Funct. Anal., 106, p. 1-17 (1992). Zbl0785.46027MR1163460
- [54] Caffarelli ( L.). — The regularity of mappings with a convex potential. J. Amer. Math. Soc., 4, p. 99-104 (1992). Zbl0753.35031MR1124980
- [55] Capitaine ( M.), Hsu ( E.P.), Ledoux ( M.). - Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Elect. Comm. in Probab., 2 (1997). Zbl0890.60045MR1484557
- [56] Carlen ( E.A. ), Soffer ( A.). - Entropy production by block variable summation and central limit theorem. Commun. Math. Phys., 140(2), p. 339-371 (1991). Zbl0734.60024MR1124273
- [57] Chafaï ( D. ), Ledoux ( M.). — Méthodes fonctionnelles pour des grandes déviations quasi-gaussiennes. C. R. Acad. Sci. Paris Sér. I Math., 329(6), p. 523-526 (1999). Zbl0939.60019MR1715130
- [58] Csiszar ( I. ). — Informationstheoretische Konvergenzbegriffe im Raum der Wahrscheinlichkeitsverteilungen. Publications of the Mathematical Institute, Hungarian Academy of Sciences , VII, Series A, p. 137-157 (1962). Zbl0239.60034MR191733
- [59] Ehrhard ( A.). - Symétrisation dans l'espace de Gauss. Math. Scand., 53, p. 281-301 (1983). Zbl0542.60003MR745081
- [60] Gardner ( R.J.). - Intersection bodies and the Busemann-Petty problem. Trans. Amer. Math. Soc., 342, p. 435-445 (1994). Zbl0801.52005MR1201126
- [61] Gardner ( R.J. ). — A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math., 140, p. 435-447 (1994). Zbl0826.52010MR1298719
- [62] Gardner ( R.J. ).— Geometric Tomography. Cambridge University Press, New York, 1995. Zbl0864.52001MR1356221
- [63] Gardner ( R.J.). — The Brunn-Minkowski inequality . Bull. Amer. Math. Soc. (N.S. ), 3, p. 355-405 (2002). Zbl1019.26008MR1898210
- [64] Gardner ( R.J.), Koldobsky ( A.), Schlumprecht ( Th.). - An analytic solution to the Busemann-Petty problem on section of convex bodies. Ann. of Math. (2), 149(2), p. 691-703 (1999). Zbl0937.52003MR1689343
- [65] Giannopoulos ( A.). — A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bobies. Mathematika, 37, p. 239-244 (1990). Zbl0696.52004MR1099772
- [66] Gordon ( Y. ), Meyer ( M.), Reisner ( S.).— Zonoids with minimal volume-product. a new proof. Proc. Amer. Math. Soc. , 104, p. 273-276 (1988). Zbl0663.52003MR958082
- [67] Gromov ( M. ). — Paul Lévy's isoperimetric inequality . Preprint I.H.E.S., 1980.
- [68] Gross ( L. ). - Logarithmic Sobolev inequalities. Amer. J. Math., 97, p. 1061-1083 (1975 ). Zbl0318.46049MR420249
- [69] Hadwiger ( H.).— Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math., 76, p. 410-418 (1972). Zbl0248.52012MR324550
- [70] Hadwiger ( H.), Ohmann ( D.).— Brunn-Minkowskischer Satz und Isoperimetrie. Math. Zeit., 66, p. 1-8 (1956). Zbl0071.38001MR82697
- [71] Hensley ( D.). — Slicing the cube in Rn and probability . Proc. Amer. Math. Soc., 73(1), p. 95-100 (1979). Zbl0394.52006MR512066
- [72] Hensley ( D.). - Slicing convex bodies - bounds for slice area in terms of body's covariance. Proc. Amer. Math. Soc. , 79(4), p. 619-625 (1980). Zbl0439.52008MR572315
- [73] Henstock ( R.), Macbeath ( A.H.). — On the measure of sum sets. (I) the theorems of Brunn, Minkowski and Lusternik. Proc. London Math. Soc., 3, p. 182-194 (1953). Zbl0052.18302MR56669
- [74] John ( F.). - Extremum problems with inequalities as subsidiary conditions . In Courant Anniversary Volume, p. 187-204, New York, 1948. Interscience. Zbl0034.10503MR30135
- [75] Knothe ( H. ). — Contributions to the theory of convex bodies. Michigan Math. J., 4, p. 39-52 (1957). Zbl0077.35803MR83759
- [76] Koldobsky ( A.). - Intersection bodies and the Busemann-Petty problem. C. R. Acad. Sci. Paris Sér. I Math., 325, p. 1181-1186 (1997). Zbl0898.52001MR1490121
- [77] Koldobsky ( A.).— An application of the Fourier transform to sections of star bodies. Israel J. Math., 106, p. 157-164 (1998). Zbl0916.52002MR1656857
- [78] Koldobsky ( A.). - Intersection bodies in R4. Adv. Math., 136(1), p. 1-14 (1998). Zbl0917.52002MR1623669
- [79] Kuelbs ( J. ) , Li ( W.V. ). - Some shift inequalities for Gaussian measures . In High dimensional probability (Oberwolfach, 1996), Progr. Probab, p. 233-243, Basel, 1998 . Birkhäuser. Zbl0912.60039MR1652329
- [80] Kullback ( S.). — A lower bound for discrimination information in terms of variation. IEEE Trans. Info. Theory , 4, p. 126-127 (1967).
- [81] Kwapien ( S.), Pycia ( M.), Schachermayer ( W.).— A proof of a conjecture of Bobkov and Houdré. Elect. Comm. in Probab. , 1, p. 7-10 (1996). Zbl0854.60014MR1386289
- [82] Larman ( D.G. ), Rogers ( C.A.). — The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika, 22, p. 164-175 (1975). Zbl0325.52007MR390914
- [83] Latała ( R.), Oleszkiewicz ( K.). - Between Sobolev and Poincaré. In Geometric aspects of functional analysis, number 1745 in Lecture Notes in Math, p. 147-168, Berlin, 2000. Springer. Zbl0986.60017MR1796718
- [84] Ledoux ( M. ). - The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001 . Zbl0995.60002MR1849347
- [85] Leindler ( L. ). — On a certain converse of Hôlder's inequality. II . Acta Sci. Math. Szeged, 33, p. 217-223 (1972). Zbl0245.26011
- [86] Lévy ( P.). — Problèmes concrets d'analyse fonctionnelle. Gauthiers-Villars, Paris, 1951. Zbl0043.32302
- [87] Lieb ( E.H. ). — Proof of an entropy conjecture of Wehrl. Commun. math. Phys., 62, p. 35-41 (1978). Zbl0385.60089MR506364
- [88] Lieb ( E.H. ). - Gaussian kernels have only gaussian maximizers . Invent. Math., 102, p. 179-208 (1990). Zbl0726.42005MR1069246
- [89] Linnik ( Ju.V. ). — An information theoretic proof of the central limit theorem with lindeberg conditions. Theory Probab. Appl., 4, p. 288-299 (1959). Zbl0097.13103MR124081
- [90] Lutwak ( E. ). - Intersection bodies and dual mixed volumes . Adv. Math., 71, p. 232-261 (1988). Zbl0657.52002MR963487
- [91] Maurey ( B. ). - Some deviation inequalities. Geom. Funct. Anal., 1(2), p. 188-197 (1991). Zbl0756.60018MR1097258
- [92] Mccann ( R.J. ). - A Convexity Theory for Interacting Gases and Equilibrium Crystals. PhD thesis, Princeton University , 1994.
- [93] Mccann ( R.J. ). - A convexity principle for interacting gases . Adv. Math., 128, p. 153-179 (1997). Zbl0901.49012MR1451422
- [94] Meyer ( M. ), Pajor ( A.).— Sections of the unit ball of lpn. J. Funct. Anal., 80, p. 109-123 (1988). Zbl0667.46004MR960226
- [95] Milman ( V. ) , Schechtman ( G.). — Asymptotic Theory of Finite Dimensional Normed Spaces. Number 1200 in Lecture Notes in MathSpringer Verlag, 1986. Zbl0606.46013MR856576
- [96] Milman ( V.D. ) , Pajor ( A.). - Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In Geometric Aspects of Functional Analysis, number 1376 in LMN, p. 64-104. Springer, ( 1989). Zbl0679.46012MR1008717
- [97] Oleszkiewicz ( K.). — On certain characterization of normal distribution. Statist. Probab. Lett., 33(3), p. 277-280 (1997). Zbl0903.60014MR1456703
- [98] Papadimitrakis ( M.). - On the Busemann-Petty problem about convex, centrally symmetric bodies in Rn. Mathematika, 39, p. 258-266 (1992). Zbl0770.52004MR1203282
- [99] Petty ( C.M. ).— Projection bodies. In Proc. Colloquium Convexity, pages 234-241, Copenhagen, 1965. Kobenhavns Univ. Math. Inst. Zbl0152.20601MR216369
- [100] Pinsker ( M.S. ). - Information and information stability of random variables and processes. Holden-Day, San Francisco, 1964. Zbl0125.09202MR213190
- [101] Pisier ( A. ). — The volume of convex bodies and Banach space geometry, volume 94 of Cambridge Tracts in Mathematics. — Cambridge University Press, Cambridge , 1989. Zbl0698.46008MR1036275
- [102] Prékopa ( A.). - On logarithmic concave measures and functions . Acta Scient. Math., 34, p. 335-343 (1973). Zbl0264.90038MR404557
- [103] Reisner ( S.). — Random polytopes and the volume product of symmetric convex bodies. Math. Scand., 57(2), p. 386-392 (1985). Zbl0593.52003MR832364
- [104] Rinott ( Y.). - On convexity of measures. Ann. Probab., 4, p. 1020-1026 (1976). Zbl0347.60003MR428540
- [105] Ros ( A.). — The isoperimetric problem. http,//www.ugr.es/aros/#Isoperimetric, 2001.
- [106] Saint-Raymond ( J.). - Sur le volume des corps convexes symétriques . In Séminaire d'initiation à l'analyse. 80/81. Exp. 11 , Paris, 1981. Publ. Math. Univ. Pierre et Marie Curie, Univ. Paris VI. Zbl0531.52006MR670798
- [107] Schechtman ( G. ), Schmuckenschläger ( M.).— A concentration inequality for harmonic measures on the sphere. In Geometric aspects of functional analysis (Israel, 1992-1994, number 77 in Oper. Theory Adv. Appl., pages 255-273, Basel, 1995. Birkhauser. Zbl0840.31012MR1353465
- [108] Scheffer ( G. ). — Isopérimétrie fonctionnelle dimensionnelle en courbure positive. C. R. Acad. Sci. Paris, Sér. I Math. , 331, p. 251-254 (2001). Zbl0964.60016MR1781836
- [109] Schmidt ( E.). - Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, II. Math. Nachr., 1, p. 81-157 (1948). 2, p. 171-244 (1949). Zbl0030.07602MR28600
- [110] Schmuckenschläger ( M.).— A concentration of measure phenomenon on uniformly convex bodies. In Geometric Aspects of Functional Analysis (Israel 1992-94), number 77 in Oper. Theory Adv. Appl., p. 275-287. Birkhäuser, 1995. Zbl0828.52004MR1353466
- [111] Schmuckenschläger ( M.). - An extremal property of the regular simplex . In Convex geometric analysis (Berkeley, CA, 1996), volume 34 of Math. Sci. Res. Inst. Publ., p. 199-202, Cambridge, 1999. Cambridge Univ. Press. Zbl0933.52010MR1665592
- [112] Schneider ( R.). - Zu einem Problem von Shephard über die Projektionen konvexer Kôrper. Math. Z., 101, p. 71-82 (1967). Zbl0173.24703
- [113] Schneider ( R. ). - Convex bodies, the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993. Zbl0798.52001MR1216521
- [114] Shannon ( C.E. ), Weaver ( W.).— The mathematical theory of communication. University of Illinois Press, Urbana, IL, 1949 . Zbl0041.25804MR32134
- [115] Stam ( A.J. ). - Some inequalities satisfied by the quantities of information of Fisher and Shannon. - Info. Control, 2, p. 101-112 (1959). Zbl0085.34701MR109101
- [116] Sudakov ( V.N.), Tsirel'son ( B.S.). - Extremal propreties of half-spaces for spherically invariant measures. J. Soviet Math., 9, 9-18, 1978. Zbl0395.28007
- Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklova.41, p. 14-24 (1974).
- [117] Szarek ( S.), Voiculescu ( D.). - Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality. Commun. Math. Phys., 178(3), p. 563-570 (1996). Zbl0863.46042MR1395205
- [118] Szarek ( S.), Voiculescu ( D.).— Shannon's entropy power inequality via restricted Minkowski sums. In Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., p. 257-262. Springer, 2000. Zbl1002.94516MR1796724
- [119] Uhrin ( B. ). - Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality. Adv. Math., 109(2), p. 288-312 (1994). Zbl0847.52007MR1304754
- [120] Vaaler ( J.D.). — A geometric inequality with applications to linear forms. Pacific J. Math., 83, p. 543-553 (1979). Zbl0465.52011MR557952
- [121] Zhang ( G. ). - Centered bodies and dual mixed volumes . Trans. Amer. Soc., 345, p. 777-801 (1994). Zbl0812.52005MR1254193
- [122] Zhang ( G. ). - A positive answer to the Busemann-Petty problem in four dimensions. Ann. of Math. (2), 149(2), p. 535-543 (1999). Zbl0937.52004MR1689339
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.