Autour de l'inégalité de Brunn-Minkowski

Franck Barthe

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 2, page 127-178
  • ISSN: 0240-2963

How to cite

top

Barthe, Franck. "Autour de l'inégalité de Brunn-Minkowski." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.2 (2003): 127-178. <http://eudml.org/doc/73601>.

@article{Barthe2003,
author = {Barthe, Franck},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Brunn-Minkowski inequality; Brascamp-Lieb inequality; measure transport},
language = {fre},
number = {2},
pages = {127-178},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Autour de l'inégalité de Brunn-Minkowski},
url = {http://eudml.org/doc/73601},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Barthe, Franck
TI - Autour de l'inégalité de Brunn-Minkowski
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 2
SP - 127
EP - 178
LA - fre
KW - Brunn-Minkowski inequality; Brascamp-Lieb inequality; measure transport
UR - http://eudml.org/doc/73601
ER -

References

top
  1. [1] Artstein ( S. ) , Ball ( K. ), Barthe ( F.), Naor ( A.).— Entropy growth for sums of independent random variables. Submitted, 2002. 
  2. [2] Artstein ( S. ) , Ball ( K. ), Barthe ( F.), Naor ( A.). — More on entropy production. Preprint, 2002. 
  3. [3] Bakry ( D.) , Ledoux ( M.). - Lévy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math. , 123, p. 259-281 (1996). Zbl0855.58011MR1374200
  4. [4] Ball ( K.) , Barthe ( F.), Naor ( A.). — Entropy jumps in the presence of a spectral gap. Duke Math. J., 119, p. 41-63 (2003). Zbl1036.94003MR1991646
  5. [5] Ball ( K.M. ).— Cube slicing in R×. Proc. Amer. Math. Soc., 97, p. 465-473 (1986). Zbl0601.52005MR840631
  6. [6] Ball ( K.M. ). — Logarithmically concave functions and sections of convex sets in R×. Studia Math., 88, p. 69-84 (1988). Zbl0642.52011MR932007
  7. [7] Ball ( K.M. ). — Volumes of sections of cubes and related problems . In J. Lindenstrauss and V. D. Milman, editors, Israel seminar on Geometric Aspects of Functional Analysis, number 1376 in Lectures Notes in Math. Springer-Verlag , 1989. Zbl0674.46008MR1008726
  8. [8] Ball ( K.M. ).— Volume ratio and a reverse isoperimetric inequality. J. London Math. Soc., 44(2), p. 351-359 (1991). Zbl0694.46010MR1136445
  9. [9] Ball ( K.M. ). — Mahler's conjecture and wavelets . Discrete Comput. Geom., 13(3-4), p. 271-277 (1995). Zbl0824.52005MR1318777
  10. [10] Ball ( K.M. ). — Some remarks on the geometry of convex sets. In Geometric Aspects of Functional Analysis, number 1317 in LMN, p. 224-231. Springer (1998). Zbl0651.52010MR950983
  11. [11] Barron ( A. ) , Johnson ( O.).— Fisher information inequalities and the central limit theorem. Preprint, arXiv, math. PR/0111020. MR2128239
  12. [12] Barron ( A.R. ).— Entropy and the central limit theorem . Ann. Probab., 14, p. 336-342 (1986). Zbl0599.60024MR815975
  13. [13] Barthe ( F. ).— Mesures unimodales et sections des boules Bnp. C. R. Acad. Sci. Paris Sér. I Math. , 321, p. 865-868 (1995). Zbl0876.46011MR1355843
  14. [14] Barthe ( F. ). — Inégalités de Brascamp-Lieb et convexité . C. R. Acad. Sci. Paris Sér. I Math., 324, p. 885-888 (1997). Zbl0904.26011MR1450443
  15. [15] Barthe ( F. ). — Inégalités fonctionnelles et géométriques obtenues par transport des mesures. Thèse de Doctorat, Université de Marne-la-Vallée, 1997. 
  16. [16] Barthe ( F. ). — An extremal property of the mean width of the simplex . Math. Ann., 310, p. 685-693 (1998). Zbl0901.52013MR1619740
  17. [17] Barthe ( F. ). - On a reverse form of the Brascamp-Lieb inequality. Invent. Math., 134, p. 335-361 (1998). Zbl0901.26010MR1650312
  18. [18] Barthe ( F. ). — Optimal Young's inequality and its converse, a simple proof. Geom. Funct. Anal., 8, p. 234-242 (1998). Zbl0902.26009MR1616143
  19. [19] Barthe ( F. ). - Restricted Prékopa-Leindler inequality . Pacific J. Math., 189, p. 211-222 (1999). Zbl0935.26012MR1696120
  20. [20] Barthe ( F. ).— Extremal properties of central half-spaces for product measures. J. Funct. Anal., 182, p. 81-107 (2001). Zbl0984.28003MR1829243
  21. [21] Barthe ( F. ). - An isoperimetric result for the Gaussian measure and unconditional sets. Bull. London Math. Soc., 33, p. 408-416 (2001). Zbl1025.60008MR1832552
  22. [22] Barthe ( F. ). — Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse, 10(3), p. 393-404 (2001). Zbl1008.60007MR1923685
  23. [23] Barthe ( F. ). - Infinite dimensional isoperimetric inequalities in product spaces with the uniform distance. Submitted, 2002 . 
  24. [24] Barthe ( F. ).— Log-concave and spherical models in isoperimetry. Geom. Funct. Anal., 12, p. 32-55 (2002). Zbl0999.60017MR1904555
  25. [25] Barthe ( F. ), Cordero-Erausquin ( D.), Fradelizi ( M.). - Shift inequalities of Gaussian type and norms of barycenters. Studia. Math. , 146(3), p. 245-259 (2001). Zbl0984.60024MR1853445
  26. [26] Barthe ( F. ), Csornyei ( M.), Naor ( A.). - A note on simultaneous polar and Cartesian decomposition. Geometric Aspects of Functional Analysis, to appear. Zbl1036.52004MR2182664
  27. [27] Barthe ( F. ), Fradelizi ( M.), Maurey ( B.). - A short solution to the Busemann-Petty problem. Positivity, 3, p. 95-100 (1999). Zbl0924.44001MR1675467
  28. [28] Barthe ( F. ), Koldobsky ( A.).— Extremal slabs in the cube and the Laplace transform. Adv. Math., 174, p. 89-114 (2003). Zbl1037.52006MR1959893
  29. [29] Barthe ( F. ), Maurey ( B.). — Somes remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré, Probabilités et Statistiques, 36(4), p. 419-434 (2000). MR1785389
  30. [30] Barthe ( F. ), Naor ( A.). - Hyperplane projections of the unit ball of lnp. Discrete Comput. Geom, 27(2), p. 215-226 (2002). Zbl0999.52003MR1880938
  31. [31] Beckner ( W.). — Inequalities in Fourier analysis . Ann. of Math., 102, p. 159-182 (1975). Zbl0338.42017MR385456
  32. [32] Bobkov ( S.G. ). — Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24(1), p. 35-48 (1996). Zbl0859.60048MR1387625
  33. [33] Bobkov ( S.G. ). - A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal, 135, p. 39-49 (1996). Zbl0838.60013MR1367623
  34. [34] Bobkov ( S.G. ).— An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab., 25(1), p. 206-214 (1997). Zbl0883.60031MR1428506
  35. [35] Bobkov ( S.G. ). - Isoperimetric problem for uniform enlargement . Studia Math., 123(1), p. 81-95 (1997). Zbl0873.60003MR1438305
  36. [36] Bobkov ( S.G. ). - Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab., 27(4), p. 1903-1921 (1999 ). Zbl0964.60013MR1742893
  37. [37] Bobkov ( S.G. ). - The size of singular component and shift inequalities. Ann. Probab., 27(1), p. 416-431 (1999). Zbl0946.60008MR1681090
  38. [38] Bobkov ( S.G. ), Houdré ( C.). — Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 228, p. 31-38 (1996). (Russian). Zbl0924.60009
  39. [39] Bobkov ( S.G. ) , Houdré ( C.). - Isoperimetric constants for product probability measures. Ann. Probab., 25(1), p. 184-205 (1997). Zbl0878.60013MR1428505
  40. [40] Bobkov ( S.G. ) , Houdré ( C.). - Weak dimension-free concentration of measure . Bernoulli, 6(4), p. 621-632 (2000). Zbl0965.60007MR1777687
  41. [41] Bobkov ( S.G. ), Ledoux ( M.). — From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10(5), p. 1028-1052 (2000). Zbl0969.26019MR1800062
  42. [42] Bollobás ( B.), Leader ( I.).— Edge-isoperimetric inequalities in the grid. Combinatorica, 11, p. 299-314 (1991). Zbl0755.05045MR1137765
  43. [43] Borell ( C. ).— The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30, p. 207-216 (1975). Zbl0292.60004MR399402
  44. [44] Borell ( C. ). — Convex functions in d-space. Period. Math. Hungar., 6, p. 111-136 (1975). Zbl0274.28009MR404559
  45. [45] Bourgain ( J.). - On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal., 1, p. 1-13 (1991). Zbl0752.52001MR1091609
  46. [46] Bourgain ( J. ). — On the distribution of polynomials on high dimensional convex sets. In Geometric Aspects of Functional Analysis, number 1469 in Lecture Notes in Math , p. 127-137. Sringer-Verlag , 1991. Zbl0773.46013MR1122617
  47. [47] Bourgain ( J.), Milman ( V.D.).— New volume ratio properties for convex symmetric bodies in R×. Invent. Math., 88, p. 319-340 (1987). Zbl0617.52006MR880954
  48. [48] Brascamp ( H.J.), Lieb ( E.H.). - Best constants in Young's inequality, its converse and its generalization to more than three functions . Adv. Math., 20, p. 151-173 (1976). Zbl0339.26020MR412366
  49. [49] Brascamp ( H.J.), Lieb ( E.H.). - On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log-concave functions, and with applications to the diffusion equation. J. Funct. Anal., 22, p. 366-389 (1976). Zbl0334.26009MR450480
  50. [50] Brenier ( Y.).— Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math., 305, p. 805-808 (1987). Zbl0652.26017MR923203
  51. [51] Brenier ( Y.). - Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math, 44 (1991). Zbl0738.46011MR1100809
  52. [52] Busemann ( H.). - A theorem on convex bodies of Brunn-Minkowski type. Amer. J. Math., 71, p. 743-762 (1949). Zbl0038.10301MR31762
  53. [53] Caetano ( A.M.). — Weyl numbers in sequence spaces and sections of unit balls. J. Funct. Anal., 106, p. 1-17 (1992). Zbl0785.46027MR1163460
  54. [54] Caffarelli ( L.). — The regularity of mappings with a convex potential. J. Amer. Math. Soc., 4, p. 99-104 (1992). Zbl0753.35031MR1124980
  55. [55] Capitaine ( M.), Hsu ( E.P.), Ledoux ( M.). - Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Elect. Comm. in Probab., 2 (1997). Zbl0890.60045MR1484557
  56. [56] Carlen ( E.A. ), Soffer ( A.). - Entropy production by block variable summation and central limit theorem. Commun. Math. Phys., 140(2), p. 339-371 (1991). Zbl0734.60024MR1124273
  57. [57] Chafaï ( D. ), Ledoux ( M.). — Méthodes fonctionnelles pour des grandes déviations quasi-gaussiennes. C. R. Acad. Sci. Paris Sér. I Math., 329(6), p. 523-526 (1999). Zbl0939.60019MR1715130
  58. [58] Csiszar ( I. ). — Informationstheoretische Konvergenzbegriffe im Raum der Wahrscheinlichkeitsverteilungen. Publications of the Mathematical Institute, Hungarian Academy of Sciences , VII, Series A, p. 137-157 (1962). Zbl0239.60034MR191733
  59. [59] Ehrhard ( A.). - Symétrisation dans l'espace de Gauss. Math. Scand., 53, p. 281-301 (1983). Zbl0542.60003MR745081
  60. [60] Gardner ( R.J.). - Intersection bodies and the Busemann-Petty problem. Trans. Amer. Math. Soc., 342, p. 435-445 (1994). Zbl0801.52005MR1201126
  61. [61] Gardner ( R.J. ). — A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math., 140, p. 435-447 (1994). Zbl0826.52010MR1298719
  62. [62] Gardner ( R.J. ).— Geometric Tomography. Cambridge University Press, New York, 1995. Zbl0864.52001MR1356221
  63. [63] Gardner ( R.J.). — The Brunn-Minkowski inequality . Bull. Amer. Math. Soc. (N.S. ), 3, p. 355-405 (2002). Zbl1019.26008MR1898210
  64. [64] Gardner ( R.J.), Koldobsky ( A.), Schlumprecht ( Th.). - An analytic solution to the Busemann-Petty problem on section of convex bodies. Ann. of Math. (2), 149(2), p. 691-703 (1999). Zbl0937.52003MR1689343
  65. [65] Giannopoulos ( A.). — A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bobies. Mathematika, 37, p. 239-244 (1990). Zbl0696.52004MR1099772
  66. [66] Gordon ( Y. ), Meyer ( M.), Reisner ( S.).— Zonoids with minimal volume-product. a new proof. Proc. Amer. Math. Soc. , 104, p. 273-276 (1988). Zbl0663.52003MR958082
  67. [67] Gromov ( M. ). — Paul Lévy's isoperimetric inequality . Preprint I.H.E.S., 1980. 
  68. [68] Gross ( L. ). - Logarithmic Sobolev inequalities. Amer. J. Math., 97, p. 1061-1083 (1975 ). Zbl0318.46049MR420249
  69. [69] Hadwiger ( H.).— Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math., 76, p. 410-418 (1972). Zbl0248.52012MR324550
  70. [70] Hadwiger ( H.), Ohmann ( D.).— Brunn-Minkowskischer Satz und Isoperimetrie. Math. Zeit., 66, p. 1-8 (1956). Zbl0071.38001MR82697
  71. [71] Hensley ( D.). — Slicing the cube in Rn and probability . Proc. Amer. Math. Soc., 73(1), p. 95-100 (1979). Zbl0394.52006MR512066
  72. [72] Hensley ( D.). - Slicing convex bodies - bounds for slice area in terms of body's covariance. Proc. Amer. Math. Soc. , 79(4), p. 619-625 (1980). Zbl0439.52008MR572315
  73. [73] Henstock ( R.), Macbeath ( A.H.). — On the measure of sum sets. (I) the theorems of Brunn, Minkowski and Lusternik. Proc. London Math. Soc., 3, p. 182-194 (1953). Zbl0052.18302MR56669
  74. [74] John ( F.). - Extremum problems with inequalities as subsidiary conditions . In Courant Anniversary Volume, p. 187-204, New York, 1948. Interscience. Zbl0034.10503MR30135
  75. [75] Knothe ( H. ). — Contributions to the theory of convex bodies. Michigan Math. J., 4, p. 39-52 (1957). Zbl0077.35803MR83759
  76. [76] Koldobsky ( A.). - Intersection bodies and the Busemann-Petty problem. C. R. Acad. Sci. Paris Sér. I Math., 325, p. 1181-1186 (1997). Zbl0898.52001MR1490121
  77. [77] Koldobsky ( A.).— An application of the Fourier transform to sections of star bodies. Israel J. Math., 106, p. 157-164 (1998). Zbl0916.52002MR1656857
  78. [78] Koldobsky ( A.). - Intersection bodies in R4. Adv. Math., 136(1), p. 1-14 (1998). Zbl0917.52002MR1623669
  79. [79] Kuelbs ( J. ) , Li ( W.V. ). - Some shift inequalities for Gaussian measures . In High dimensional probability (Oberwolfach, 1996), Progr. Probab, p. 233-243, Basel, 1998 . Birkhäuser. Zbl0912.60039MR1652329
  80. [80] Kullback ( S.). — A lower bound for discrimination information in terms of variation. IEEE Trans. Info. Theory , 4, p. 126-127 (1967). 
  81. [81] Kwapien ( S.), Pycia ( M.), Schachermayer ( W.).— A proof of a conjecture of Bobkov and Houdré. Elect. Comm. in Probab. , 1, p. 7-10 (1996). Zbl0854.60014MR1386289
  82. [82] Larman ( D.G. ), Rogers ( C.A.). — The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika, 22, p. 164-175 (1975). Zbl0325.52007MR390914
  83. [83] Latała ( R.), Oleszkiewicz ( K.). - Between Sobolev and Poincaré. In Geometric aspects of functional analysis, number 1745 in Lecture Notes in Math, p. 147-168, Berlin, 2000. Springer. Zbl0986.60017MR1796718
  84. [84] Ledoux ( M. ). - The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001 . Zbl0995.60002MR1849347
  85. [85] Leindler ( L. ). — On a certain converse of Hôlder's inequality. II . Acta Sci. Math. Szeged, 33, p. 217-223 (1972). Zbl0245.26011
  86. [86] Lévy ( P.). — Problèmes concrets d'analyse fonctionnelle. Gauthiers-Villars, Paris, 1951. Zbl0043.32302
  87. [87] Lieb ( E.H. ). — Proof of an entropy conjecture of Wehrl. Commun. math. Phys., 62, p. 35-41 (1978). Zbl0385.60089MR506364
  88. [88] Lieb ( E.H. ). - Gaussian kernels have only gaussian maximizers . Invent. Math., 102, p. 179-208 (1990). Zbl0726.42005MR1069246
  89. [89] Linnik ( Ju.V. ). — An information theoretic proof of the central limit theorem with lindeberg conditions. Theory Probab. Appl., 4, p. 288-299 (1959). Zbl0097.13103MR124081
  90. [90] Lutwak ( E. ). - Intersection bodies and dual mixed volumes . Adv. Math., 71, p. 232-261 (1988). Zbl0657.52002MR963487
  91. [91] Maurey ( B. ). - Some deviation inequalities. Geom. Funct. Anal., 1(2), p. 188-197 (1991). Zbl0756.60018MR1097258
  92. [92] Mccann ( R.J. ). - A Convexity Theory for Interacting Gases and Equilibrium Crystals. PhD thesis, Princeton University , 1994. 
  93. [93] Mccann ( R.J. ). - A convexity principle for interacting gases . Adv. Math., 128, p. 153-179 (1997). Zbl0901.49012MR1451422
  94. [94] Meyer ( M. ), Pajor ( A.).— Sections of the unit ball of lpn. J. Funct. Anal., 80, p. 109-123 (1988). Zbl0667.46004MR960226
  95. [95] Milman ( V. ) , Schechtman ( G.). — Asymptotic Theory of Finite Dimensional Normed Spaces. Number 1200 in Lecture Notes in MathSpringer Verlag, 1986. Zbl0606.46013MR856576
  96. [96] Milman ( V.D. ) , Pajor ( A.). - Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In Geometric Aspects of Functional Analysis, number 1376 in LMN, p. 64-104. Springer, ( 1989). Zbl0679.46012MR1008717
  97. [97] Oleszkiewicz ( K.). — On certain characterization of normal distribution. Statist. Probab. Lett., 33(3), p. 277-280 (1997). Zbl0903.60014MR1456703
  98. [98] Papadimitrakis ( M.). - On the Busemann-Petty problem about convex, centrally symmetric bodies in Rn. Mathematika, 39, p. 258-266 (1992). Zbl0770.52004MR1203282
  99. [99] Petty ( C.M. ).— Projection bodies. In Proc. Colloquium Convexity, pages 234-241, Copenhagen, 1965. Kobenhavns Univ. Math. Inst. Zbl0152.20601MR216369
  100. [100] Pinsker ( M.S. ). - Information and information stability of random variables and processes. Holden-Day, San Francisco, 1964. Zbl0125.09202MR213190
  101. [101] Pisier ( A. ). — The volume of convex bodies and Banach space geometry, volume 94 of Cambridge Tracts in Mathematics. — Cambridge University Press, Cambridge , 1989. Zbl0698.46008MR1036275
  102. [102] Prékopa ( A.). - On logarithmic concave measures and functions . Acta Scient. Math., 34, p. 335-343 (1973). Zbl0264.90038MR404557
  103. [103] Reisner ( S.). — Random polytopes and the volume product of symmetric convex bodies. Math. Scand., 57(2), p. 386-392 (1985). Zbl0593.52003MR832364
  104. [104] Rinott ( Y.). - On convexity of measures. Ann. Probab., 4, p. 1020-1026 (1976). Zbl0347.60003MR428540
  105. [105] Ros ( A.). — The isoperimetric problem. http,//www.ugr.es/aros/#Isoperimetric, 2001. 
  106. [106] Saint-Raymond ( J.). - Sur le volume des corps convexes symétriques . In Séminaire d'initiation à l'analyse. 80/81. Exp. 11 , Paris, 1981. Publ. Math. Univ. Pierre et Marie Curie, Univ. Paris VI. Zbl0531.52006MR670798
  107. [107] Schechtman ( G. ), Schmuckenschläger ( M.).— A concentration inequality for harmonic measures on the sphere. In Geometric aspects of functional analysis (Israel, 1992-1994, number 77 in Oper. Theory Adv. Appl., pages 255-273, Basel, 1995. Birkhauser. Zbl0840.31012MR1353465
  108. [108] Scheffer ( G. ). — Isopérimétrie fonctionnelle dimensionnelle en courbure positive. C. R. Acad. Sci. Paris, Sér. I Math. , 331, p. 251-254 (2001). Zbl0964.60016MR1781836
  109. [109] Schmidt ( E.). - Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, II. Math. Nachr., 1, p. 81-157 (1948). 2, p. 171-244 (1949). Zbl0030.07602MR28600
  110. [110] Schmuckenschläger ( M.).— A concentration of measure phenomenon on uniformly convex bodies. In Geometric Aspects of Functional Analysis (Israel 1992-94), number 77 in Oper. Theory Adv. Appl., p. 275-287. Birkhäuser, 1995. Zbl0828.52004MR1353466
  111. [111] Schmuckenschläger ( M.). - An extremal property of the regular simplex . In Convex geometric analysis (Berkeley, CA, 1996), volume 34 of Math. Sci. Res. Inst. Publ., p. 199-202, Cambridge, 1999. Cambridge Univ. Press. Zbl0933.52010MR1665592
  112. [112] Schneider ( R.). - Zu einem Problem von Shephard über die Projektionen konvexer Kôrper. Math. Z., 101, p. 71-82 (1967). Zbl0173.24703
  113. [113] Schneider ( R. ). - Convex bodies, the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993. Zbl0798.52001MR1216521
  114. [114] Shannon ( C.E. ), Weaver ( W.).— The mathematical theory of communication. University of Illinois Press, Urbana, IL, 1949 . Zbl0041.25804MR32134
  115. [115] Stam ( A.J. ). - Some inequalities satisfied by the quantities of information of Fisher and Shannon. - Info. Control, 2, p. 101-112 (1959). Zbl0085.34701MR109101
  116. [116] Sudakov ( V.N.), Tsirel'son ( B.S.). - Extremal propreties of half-spaces for spherically invariant measures. J. Soviet Math., 9, 9-18, 1978. Zbl0395.28007
  117. Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklova.41, p. 14-24 (1974). 
  118. [117] Szarek ( S.), Voiculescu ( D.). - Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality. Commun. Math. Phys., 178(3), p. 563-570 (1996). Zbl0863.46042MR1395205
  119. [118] Szarek ( S.), Voiculescu ( D.).— Shannon's entropy power inequality via restricted Minkowski sums. In Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., p. 257-262. Springer, 2000. Zbl1002.94516MR1796724
  120. [119] Uhrin ( B. ). - Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality. Adv. Math., 109(2), p. 288-312 (1994). Zbl0847.52007MR1304754
  121. [120] Vaaler ( J.D.). — A geometric inequality with applications to linear forms. Pacific J. Math., 83, p. 543-553 (1979). Zbl0465.52011MR557952
  122. [121] Zhang ( G. ). - Centered bodies and dual mixed volumes . Trans. Amer. Soc., 345, p. 777-801 (1994). Zbl0812.52005MR1254193
  123. [122] Zhang ( G. ). - A positive answer to the Busemann-Petty problem in four dimensions. Ann. of Math. (2), 149(2), p. 535-543 (1999). Zbl0937.52004MR1689339

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.