The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On extremal and perfect σ-algebras for d -actions on a Lebesgue space”

On extremal and perfect σ-algebras for flows

B. Kamiński, Z. Kowalski (1998)

Studia Mathematica

Similarity:

It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.

Sequence entropy pairs and complexity pairs for a measure

Wen Huang, Alejandro Maass, Xiangdong Ye (2004)

Annales de l’institut Fourier

Similarity:

In this paper we explore topological factors in between the Kronecker factor and the maximal equicontinuous factor of a system. For this purpose we introduce the concept of sequence entropy n -tuple for a measure and we show that the set of sequence entropy tuples for a measure is contained in the set of topological sequence entropy tuples [H- Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we introduce a weak notion and a strong notion of complexity...

Relatively perfect σ-algebras for flows

F. Blanchard, B. Kamiński (1995)

Studia Mathematica

Similarity:

We show that for every ergodic flow, given any factor σ-algebra ℱ, there exists a σ-algebra which is relatively perfect with respect to ℱ. Using this result and Ornstein's isomorphism theorem for flows, we give a functorial definition of the entropy of flows.

On the directional entropy for ℤ²-actions on a Lebesgue space

B. Kamiński, K. Park (1999)

Studia Mathematica

Similarity:

We define the concept of directional entropy for arbitrary 2 -actions on a Lebesgue space, we examine its basic properties and consider its behaviour in the class of product actions and rigid actions.

Sequence entropy and rigid σ-algebras

Alvaro Coronel, Alejandro Maass, Song Shao (2009)

Studia Mathematica

Similarity:

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,,ν,T) be a factor of a measure-theoretical dynamical system (X,,μ,T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence A ⊆ S such that h μ A ( T , ξ | ) = H μ ( ξ | ( X | Y ) ) for all finite partitions ξ, where (X|Y) is the Kronecker algebra over . A similar result holds for rigid algebras over . As an application, we characterize compact, rigid and mixing extensions via relative...