Pointwise multipliers on weighted BMO spaces
Studia Mathematica (1997)
- Volume: 125, Issue: 1, page 35-56
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topNakai, Eiichi. "Pointwise multipliers on weighted BMO spaces." Studia Mathematica 125.1 (1997): 35-56. <http://eudml.org/doc/216420>.
@article{Nakai1997,
abstract = {Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for $ϕ: X×ℝ_\{+\} → ℝ_\{+\}$, we denote by $bmo_\{ϕ,p\}(X)$ the set of all functions $f ∈ L^\{p\}_\{loc\}(X)$ such that $sup_\{a ∈ X, r>0\} 1/ϕ(a,r) (1/μ(B(a,r)) ʃ_\{B(a,r)\} |f(x) -f_\{B(a,r)\}|^p dμ)^\{1/p\} < ∞$, where B(a,r) is the ball centered at a and of radius r, and $f_\{B(a,r)\}$ is the integral mean of f on B(a,r). Let $bmo_\{ϕ\}(X) = bmo_\{ϕ,1\}(X)$ and $bmo(X) = bmo_\{1,1\}(X)$. In this paper, we characterize $PWM(bmo_\{ϕ1,p_1\}(X), bmo_\{ϕ2,p_2\}(X))$. The following are examples of our results. $PWM(bmo_\{(log(1/r))^\{-α\}\}(^n),bmo_\{(log(1/r))^\{-β\}\}(^n)) = bmo_\{(log(1/r))^\{α-β-1\}\}(^n)$, 0≤β < α < 1, $PWM (bmo_\{(log(1/r))^\{-1\}\}(^n),bmo(^n)) = bmo_\{(log log(1/r))^\{-1\}\}(^n),$$PWM (bmo(ℝ^n),bmo_\{log(|a|+r+1/r),p\}(ℝ^n)) = bmo(ℝ^n)$, 1 < p < ∞, etc.},
author = {Nakai, Eiichi},
journal = {Studia Mathematica},
keywords = {multiplier; pointwise multiplier; bounded mean oscillation; space of homogeneous type; functions of bounded mean oscillation; weighted BMO spaces; pointwise multipliers},
language = {eng},
number = {1},
pages = {35-56},
title = {Pointwise multipliers on weighted BMO spaces},
url = {http://eudml.org/doc/216420},
volume = {125},
year = {1997},
}
TY - JOUR
AU - Nakai, Eiichi
TI - Pointwise multipliers on weighted BMO spaces
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 1
SP - 35
EP - 56
AB - Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for $ϕ: X×ℝ_{+} → ℝ_{+}$, we denote by $bmo_{ϕ,p}(X)$ the set of all functions $f ∈ L^{p}_{loc}(X)$ such that $sup_{a ∈ X, r>0} 1/ϕ(a,r) (1/μ(B(a,r)) ʃ_{B(a,r)} |f(x) -f_{B(a,r)}|^p dμ)^{1/p} < ∞$, where B(a,r) is the ball centered at a and of radius r, and $f_{B(a,r)}$ is the integral mean of f on B(a,r). Let $bmo_{ϕ}(X) = bmo_{ϕ,1}(X)$ and $bmo(X) = bmo_{1,1}(X)$. In this paper, we characterize $PWM(bmo_{ϕ1,p_1}(X), bmo_{ϕ2,p_2}(X))$. The following are examples of our results. $PWM(bmo_{(log(1/r))^{-α}}(^n),bmo_{(log(1/r))^{-β}}(^n)) = bmo_{(log(1/r))^{α-β-1}}(^n)$, 0≤β < α < 1, $PWM (bmo_{(log(1/r))^{-1}}(^n),bmo(^n)) = bmo_{(log log(1/r))^{-1}}(^n),$$PWM (bmo(ℝ^n),bmo_{log(|a|+r+1/r),p}(ℝ^n)) = bmo(ℝ^n)$, 1 < p < ∞, etc.
LA - eng
KW - multiplier; pointwise multiplier; bounded mean oscillation; space of homogeneous type; functions of bounded mean oscillation; weighted BMO spaces; pointwise multipliers
UR - http://eudml.org/doc/216420
ER -
References
top- [1] H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153. Zbl0578.42016
- [2] S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960. Zbl0706.42015
- [3] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. Zbl0224.43006
- [4] R. R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [5] Y. Gotoh, On multipliers for on general domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 339-354.
- [6] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196. Zbl0341.43005
- [7] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
- [8] P. G. Lemarié, Algèbres d'opérateurs et semi-groupes de Poisson sur un espace de nature homogène, Publ. Math. Orsay 84-3 (1984). Zbl0598.58045
- [9] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. Zbl0431.46018
- [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
- [11] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. Zbl0243.44003
- [12] E. Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math. (Basel) 43 (1984), 519-529. Zbl0586.46021
- [13] E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), 105-119. Zbl0812.42008
- [14] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. Zbl0546.42019
- [15] E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), to appear. Zbl0884.42010
- [16] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1965), 593-608. Zbl0199.44303
- [17] D. A. Stegenga, Bounded Toeplitz operators on and applications of the duality between and the functions of bounded mean oscillation, Amer. Math. 98 (1976), 573-589. Zbl0335.47018
- [18] K. Yabuta, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 (1993), 737-744. Zbl0779.42006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.