Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
The Anh Bui; Jun Cao; Luong Dang Ky; Dachun Yang; Sibei Yang
Analysis and Geometry in Metric Spaces (2013)
- Volume: 1, page 69-129
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topThe Anh Bui, et al. "Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates." Analysis and Geometry in Metric Spaces 1 (2013): 69-129. <http://eudml.org/doc/267393>.
@article{TheAnhBui2013,
abstract = {Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ ( [...] ; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)= [...] is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ},
author = {The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Musielak-Orlicz-Hardy space; molecule; atom; maximal function; Lusin area function; Schrödinger operator; elliptic operator; Riesz transform},
language = {eng},
pages = {69-129},
title = {Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates},
url = {http://eudml.org/doc/267393},
volume = {1},
year = {2013},
}
TY - JOUR
AU - The Anh Bui
AU - Jun Cao
AU - Luong Dang Ky
AU - Dachun Yang
AU - Sibei Yang
TI - Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
JO - Analysis and Geometry in Metric Spaces
PY - 2013
VL - 1
SP - 69
EP - 129
AB - Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ ( [...] ; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)= [...] is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ
LA - eng
KW - Musielak-Orlicz-Hardy space; molecule; atom; maximal function; Lusin area function; Schrödinger operator; elliptic operator; Riesz transform
UR - http://eudml.org/doc/267393
ER -
References
top- D. Albrecht, X. T. Duong and A. McIntosh, Operator theory and harmonic analysis, Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), 77-136, Proc. Centre Math. Appl. Austral. Nat. Univ., 34, Austral. Nat. Univ., Canberra, 1996. Zbl0903.47010
- T. Aoki, Locally bounded linear topological space, Proc. Imp. Acad. Tokyo 18 (1942), 588-594.[Crossref] Zbl0060.26503
- J. Assaad and E. M. Ouhabaz, Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal. 22 (2012), 1108-1136. Zbl1259.58006
- P. Auscher, On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on Rn and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871, xviii+75 pp. Zbl1221.42022
- P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished Manuscript, 2005.
- P. Auscher and J. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. general operator theory and weights, Adv. Math. 212 (2007), 225-276. Zbl1213.42030
- P. Auscher and J. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type, J. Evol. Equ. 7 (2007), 265-316.[Crossref] Zbl1210.42023
- P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 18 (2008), 192-248.[Crossref] Zbl1217.42043
- P. Auscher and Ph. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998), viii+172 pp. Zbl0909.35001
- S. Blunck and P. C. Kunstmann, Weak type (p; p) estimates for Riesz transforms, Math. Z. 247 (2004), 137-148. Zbl1138.35315
- S. Blunck and P. Kunstmann, Generalized Gaussian estimates and the Legendre transform, J. Operator Theory 53 (2005), 351-365. Zbl1117.47020
- T. A. Bui, J. Cao, L. Ky, D. Yang and S. Yang, Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Taiwanese J. Math. (to appear). Zbl1284.42066
- A. Bonami, J. Feuto and S. Grellier, Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat. 54 (2010), 341-358.[Crossref] Zbl1205.42020
- A. Bonami and S. Grellier, Hankel operators and weak factorization for Hardy-Orlicz spaces, Colloq. Math. 118 (2010), 107-132. Zbl1195.32002
- A. Bonami, S. Grellier and L. D. Ky, Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets, J. Math. Pure Appl. 97 (2012), 230-241. Zbl1241.47028
- A. Bonami, T. Iwaniec, P. Jones and M. Zinsmeister, On the product of functions in BMO and H1, Ann. Inst. Fourier (Grenoble) 57 (2007), 1405-1439. Zbl1132.42010
- T. A. Bui and X. T. Duong, Weighted Hardy spaces associated to operators and boundedness of singular integrals, arXiv: 1202.2063. Zbl1301.42023
- J. Cao and D. Yang, Hardy spaces HpL (Rn) associated to operators satisfying k-Davies-Gaffney estimates, Sci. China Math. 55 (2012), 1403-1440.[Crossref] Zbl1266.42057
- J. Cao, D. Yang and S. Yang, Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators, Rev. Mat. Complut. 26 (2013), 99-114. Zbl1298.47029
- R. R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274. Zbl0289.46037
- R. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286. Zbl0864.42009
- R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.[Crossref] Zbl0569.42016
- R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homog`enes, Lecture Notes in Math., 242, Springer, Berlin, 1971.
- T. Coulhon and A. Sikora, Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem, Proc. Lond. Math. Soc. 96 (2008), 507-544. Zbl1148.35009
- M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H1 functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. Zbl0853.47010
- D. Cruz-Uribe and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), 2941-2960. Zbl0851.42016
- E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), 141-169. Zbl0839.35034
- L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), 657-700. Zbl1096.46013
- L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), 1731-1768. Zbl1179.46028
- X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943-973.[Crossref] Zbl1078.42013
- C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-195. Zbl0257.46078
- M. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12 (1959), 1-11.[Crossref] Zbl0102.09202
- J. García-Cuerva, Weighted Hp spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 1-63.
- J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Amsterdam, North- Holland, 1985.
- L. Grafakos, Modern Fourier Analysis, Second edition, Graduate Texts in Mathematics 250, Springer, New York, 2009. Zbl1158.42001
- L. Greco and T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 17-35. Zbl0848.58051
- E. Harboure, O. Salinas and B. Viviani, A look at BMO(!) through Carleson measures, J. Fourier Anal. Appl. 13 (2007), 267-284.[Crossref] Zbl1174.42019
- M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäser Verlag, Basel, 2006.
- S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (2011), no. 1007, vi+78 pp. Zbl1232.42018
- S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37-116. Zbl1162.42012
- S. Hofmann, S. Mayboroda and A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces, Ann. Sci. École Norm. Sup. (4) 44 (2011), 723-800. Zbl1243.47072
- S. Hou, D. Yang and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, arXiv: 1201.1945. Zbl1285.42020
- T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. Zbl0802.35016
- S. Janson, Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), 959-982. Zbl0453.46027
- R. Jiang and D. Yang, Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates, Commun. Contemp. Math. 13 (2011), 331-373.[Crossref] Zbl1221.42042
- R. Jiang and D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal. 258 (2010), 1167-1224. Zbl1205.46014
- R. Jiang, D. Yang and Y. Zhou, Orlicz-Hardy spaces associated with operators, Sci. China Ser. A 52 (2009), 1042-1080.[Crossref] Zbl1177.42018
- R. Johnson and C. J. Neugebauer, Homeomorphisms preserving Ap, Rev. Mat. Ibero. 3 (1987), 249-273. Zbl0677.42019
- L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, arXiv: 1103.3757. Zbl1284.42073
- L. D. Ky, Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc. (2012), DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05727-8.[Crossref]
- L. D. Ky, Endpoint estimates for commutators of singular integrals related to Schrödinger operators, arXiv:1203.6335. Zbl06539486
- L. D. Ky, Bilinear decompositions for the product space H1 L×BMOL, arXiv:1204.3041.
- L. D. Ky, On weak -convergence in H1 L (Rd), arXiv:1205.2542.
- R. H. Latter, A characterization of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 93-101. Zbl0398.42017
- A. K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces, Math. Z. 251 (2005), 509-521. Zbl1092.42009
- Y. Liang, J. Huang and D. Yang, New real-variable characterizations of Hardy spaces of Musielak-Orlicz type, J. Math. Anal. Appl. 395 (2012), 413-428. Zbl1256.42035
- Y. Liang, D. Yang and S. Yang, Applications of Orlicz-Hardy spaces associated with operators satisfying Poisson estimates, Sci. China Math. 54 (2011), 2395-2426.[Crossref] Zbl1245.42019
- A. McIntosh, Operators which have an H1 functional calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986), 210-231, Proc. Centre Math. Anal., Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, 1986.
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983. Zbl0557.46020
- E. Nakai, Pointwise multipliers on weighted BMO spaces, Studia Math. 125 (1997), 35, 35-56. Zbl0874.42009
- E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. Zbl0546.42019
- M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. Zbl0724.46032
- M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250, Marcel Dekker, Inc., New York, 2002. Zbl0997.46027
- S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471-473. Zbl0079.12602
- E. Russ, The atomic decomposition for tent spaces on spaces of homogeneous type, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, 125-135, Proc. Centre Math. Appl., 42, Austral. Nat. Univ., Canberra, 2007.
- S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994), 277-319. Zbl0836.35030
- L. Song and L. Yan, Riesz transforms associated to Schrödinger operators on weighted Hardy spaces, J. Funct. Anal. 259 (2010), 1466-1490. Zbl1202.35072
- J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. Zbl0429.46016
- J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989. Zbl0676.42021
- E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of Hp-spaces, Acta Math. 103 (1960), 25-62. Zbl0097.28501
- D. Yang and S. Yang, Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of Rn, Indiana Univ. Math. J. (to appear) or arXiv:1107.2971. Zbl1271.42034
- D. Yang and S. Yang, Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of Rn, Rev. Mat. Ibero. âA.(2013), DOI 10.4171/RMI/719.[Crossref] Zbl1266.42056
- D. Yang and S. Yang, Local Hardy spaces of Musielak-Orlicz type and their applications, Sci. China Math. 55 (2012), 1677-1720.[Crossref] Zbl1266.42055
- D. Yang and S. Yang, Musielak-Orlicz Hardy spaces associated with operators and their applications, J. Geom. Anal. (2012), DOI: 10.1007/s12220-012-9344-y or arXiv: 1201.5512.[Crossref] Zbl1302.42033
- K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. Zbl0842.92020
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.