Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates

The Anh Bui; Jun Cao; Luong Dang Ky; Dachun Yang; Sibei Yang

Analysis and Geometry in Metric Spaces (2013)

  • Volume: 1, page 69-129
  • ISSN: 2299-3274

Abstract

top
Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ ( [...] ; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)= [...] is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ

How to cite

top

The Anh Bui, et al. "Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates." Analysis and Geometry in Metric Spaces 1 (2013): 69-129. <http://eudml.org/doc/267393>.

@article{TheAnhBui2013,
abstract = {Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ ( [...] ; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)= [...] is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ},
author = {The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Musielak-Orlicz-Hardy space; molecule; atom; maximal function; Lusin area function; Schrödinger operator; elliptic operator; Riesz transform},
language = {eng},
pages = {69-129},
title = {Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates},
url = {http://eudml.org/doc/267393},
volume = {1},
year = {2013},
}

TY - JOUR
AU - The Anh Bui
AU - Jun Cao
AU - Luong Dang Ky
AU - Dachun Yang
AU - Sibei Yang
TI - Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates
JO - Analysis and Geometry in Metric Spaces
PY - 2013
VL - 1
SP - 69
EP - 129
AB - Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ ( [...] ; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)= [...] is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ
LA - eng
KW - Musielak-Orlicz-Hardy space; molecule; atom; maximal function; Lusin area function; Schrödinger operator; elliptic operator; Riesz transform
UR - http://eudml.org/doc/267393
ER -

References

top
  1. D. Albrecht, X. T. Duong and A. McIntosh, Operator theory and harmonic analysis, Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), 77-136, Proc. Centre Math. Appl. Austral. Nat. Univ., 34, Austral. Nat. Univ., Canberra, 1996. Zbl0903.47010
  2. T. Aoki, Locally bounded linear topological space, Proc. Imp. Acad. Tokyo 18 (1942), 588-594.[Crossref] Zbl0060.26503
  3. J. Assaad and E. M. Ouhabaz, Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal. 22 (2012), 1108-1136. Zbl1259.58006
  4. P. Auscher, On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on Rn and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871, xviii+75 pp. Zbl1221.42022
  5. P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished Manuscript, 2005. 
  6. P. Auscher and J. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. general operator theory and weights, Adv. Math. 212 (2007), 225-276. Zbl1213.42030
  7. P. Auscher and J. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type, J. Evol. Equ. 7 (2007), 265-316.[Crossref] Zbl1210.42023
  8. P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 18 (2008), 192-248.[Crossref] Zbl1217.42043
  9. P. Auscher and Ph. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998), viii+172 pp. Zbl0909.35001
  10. S. Blunck and P. C. Kunstmann, Weak type (p; p) estimates for Riesz transforms, Math. Z. 247 (2004), 137-148. Zbl1138.35315
  11. S. Blunck and P. Kunstmann, Generalized Gaussian estimates and the Legendre transform, J. Operator Theory 53 (2005), 351-365. Zbl1117.47020
  12. T. A. Bui, J. Cao, L. Ky, D. Yang and S. Yang, Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Taiwanese J. Math. (to appear). Zbl1284.42066
  13. A. Bonami, J. Feuto and S. Grellier, Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat. 54 (2010), 341-358.[Crossref] Zbl1205.42020
  14. A. Bonami and S. Grellier, Hankel operators and weak factorization for Hardy-Orlicz spaces, Colloq. Math. 118 (2010), 107-132. Zbl1195.32002
  15. A. Bonami, S. Grellier and L. D. Ky, Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets, J. Math. Pure Appl. 97 (2012), 230-241. Zbl1241.47028
  16. A. Bonami, T. Iwaniec, P. Jones and M. Zinsmeister, On the product of functions in BMO and H1, Ann. Inst. Fourier (Grenoble) 57 (2007), 1405-1439. Zbl1132.42010
  17. T. A. Bui and X. T. Duong, Weighted Hardy spaces associated to operators and boundedness of singular integrals, arXiv: 1202.2063. Zbl1301.42023
  18. J. Cao and D. Yang, Hardy spaces HpL (Rn) associated to operators satisfying k-Davies-Gaffney estimates, Sci. China Math. 55 (2012), 1403-1440.[Crossref] Zbl1266.42057
  19. J. Cao, D. Yang and S. Yang, Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators, Rev. Mat. Complut. 26 (2013), 99-114. Zbl1298.47029
  20. R. R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274. Zbl0289.46037
  21. R. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286. Zbl0864.42009
  22. R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.[Crossref] Zbl0569.42016
  23. R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homog`enes, Lecture Notes in Math., 242, Springer, Berlin, 1971. 
  24. T. Coulhon and A. Sikora, Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem, Proc. Lond. Math. Soc. 96 (2008), 507-544. Zbl1148.35009
  25. M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H1 functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. Zbl0853.47010
  26. D. Cruz-Uribe and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), 2941-2960. Zbl0851.42016
  27. E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), 141-169. Zbl0839.35034
  28. L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), 657-700. Zbl1096.46013
  29. L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), 1731-1768. Zbl1179.46028
  30. X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943-973.[Crossref] Zbl1078.42013
  31. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-195. Zbl0257.46078
  32. M. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12 (1959), 1-11.[Crossref] Zbl0102.09202
  33. J. García-Cuerva, Weighted Hp spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 1-63. 
  34. J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Amsterdam, North- Holland, 1985. 
  35. L. Grafakos, Modern Fourier Analysis, Second edition, Graduate Texts in Mathematics 250, Springer, New York, 2009. Zbl1158.42001
  36. L. Greco and T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 17-35. Zbl0848.58051
  37. E. Harboure, O. Salinas and B. Viviani, A look at BMO(!) through Carleson measures, J. Fourier Anal. Appl. 13 (2007), 267-284.[Crossref] Zbl1174.42019
  38. M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäser Verlag, Basel, 2006. 
  39. S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (2011), no. 1007, vi+78 pp. Zbl1232.42018
  40. S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37-116. Zbl1162.42012
  41. S. Hofmann, S. Mayboroda and A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces, Ann. Sci. École Norm. Sup. (4) 44 (2011), 723-800. Zbl1243.47072
  42. S. Hou, D. Yang and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, arXiv: 1201.1945. Zbl1285.42020
  43. T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. Zbl0802.35016
  44. S. Janson, Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), 959-982. Zbl0453.46027
  45. R. Jiang and D. Yang, Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates, Commun. Contemp. Math. 13 (2011), 331-373.[Crossref] Zbl1221.42042
  46. R. Jiang and D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal. 258 (2010), 1167-1224. Zbl1205.46014
  47. R. Jiang, D. Yang and Y. Zhou, Orlicz-Hardy spaces associated with operators, Sci. China Ser. A 52 (2009), 1042-1080.[Crossref] Zbl1177.42018
  48. R. Johnson and C. J. Neugebauer, Homeomorphisms preserving Ap, Rev. Mat. Ibero. 3 (1987), 249-273. Zbl0677.42019
  49. L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, arXiv: 1103.3757. Zbl1284.42073
  50. L. D. Ky, Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc. (2012), DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05727-8.[Crossref] 
  51. L. D. Ky, Endpoint estimates for commutators of singular integrals related to Schrödinger operators, arXiv:1203.6335. Zbl06539486
  52. L. D. Ky, Bilinear decompositions for the product space H1 L×BMOL, arXiv:1204.3041. 
  53. L. D. Ky, On weak -convergence in H1 L (Rd), arXiv:1205.2542. 
  54. R. H. Latter, A characterization of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 93-101. Zbl0398.42017
  55. A. K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces, Math. Z. 251 (2005), 509-521. Zbl1092.42009
  56. Y. Liang, J. Huang and D. Yang, New real-variable characterizations of Hardy spaces of Musielak-Orlicz type, J. Math. Anal. Appl. 395 (2012), 413-428. Zbl1256.42035
  57. Y. Liang, D. Yang and S. Yang, Applications of Orlicz-Hardy spaces associated with operators satisfying Poisson estimates, Sci. China Math. 54 (2011), 2395-2426.[Crossref] Zbl1245.42019
  58. A. McIntosh, Operators which have an H1 functional calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986), 210-231, Proc. Centre Math. Anal., Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, 1986. 
  59. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983. Zbl0557.46020
  60. E. Nakai, Pointwise multipliers on weighted BMO spaces, Studia Math. 125 (1997), 35, 35-56. Zbl0874.42009
  61. E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. Zbl0546.42019
  62. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. Zbl0724.46032
  63. M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250, Marcel Dekker, Inc., New York, 2002. Zbl0997.46027
  64. S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471-473. Zbl0079.12602
  65. E. Russ, The atomic decomposition for tent spaces on spaces of homogeneous type, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, 125-135, Proc. Centre Math. Appl., 42, Austral. Nat. Univ., Canberra, 2007. 
  66. S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994), 277-319. Zbl0836.35030
  67. L. Song and L. Yan, Riesz transforms associated to Schrödinger operators on weighted Hardy spaces, J. Funct. Anal. 259 (2010), 1466-1490. Zbl1202.35072
  68. J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. Zbl0429.46016
  69. J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989. Zbl0676.42021
  70. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of Hp-spaces, Acta Math. 103 (1960), 25-62. Zbl0097.28501
  71. D. Yang and S. Yang, Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of Rn, Indiana Univ. Math. J. (to appear) or arXiv:1107.2971. Zbl1271.42034
  72. D. Yang and S. Yang, Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of Rn, Rev. Mat. Ibero. âA.(2013), DOI 10.4171/RMI/719.[Crossref] Zbl1266.42056
  73. D. Yang and S. Yang, Local Hardy spaces of Musielak-Orlicz type and their applications, Sci. China Math. 55 (2012), 1677-1720.[Crossref] Zbl1266.42055
  74. D. Yang and S. Yang, Musielak-Orlicz Hardy spaces associated with operators and their applications, J. Geom. Anal. (2012), DOI: 10.1007/s12220-012-9344-y or arXiv: 1201.5512.[Crossref] Zbl1302.42033
  75. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. Zbl0842.92020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.