Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type

Thomas Meyer

Studia Mathematica (1997)

  • Volume: 125, Issue: 2, page 101-129
  • ISSN: 0039-3223

Abstract

top
Let ε ω ( I ) denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For μ ε ω ( I ) ' with s u p p ( μ ) = 0 one can define the convolution operator T μ : ε ω ( I ) ε ω ( I ) , T μ ( f ) ( x ) : = μ , f ( x - · ) . We give a characterization of the surjectivity of T μ for quasianalytic classes ε ω ( I ) , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform μ ^ of μ.

How to cite

top

Meyer, Thomas. "Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type." Studia Mathematica 125.2 (1997): 101-129. <http://eudml.org/doc/216426>.

@article{Meyer1997,
abstract = {Let $ε_\{\{ω\}\}(I)$ denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For $μ ∈ ε_\{\{ω\}\}(I)^\{\prime \}$ with $supp(μ) = \{0\}$ one can define the convolution operator $T_μ: ε_\{\{ω\}\}(I) → ε_\{\{ω\}\}(I)$, $T_μ(f)(x):= ⟨μ,f(x-·)⟩$. We give a characterization of the surjectivity of $T_μ$ for quasianalytic classes $ε_\{\{ω\}\}(I)$, where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform $\widehat\{μ\}$ of μ.},
author = {Meyer, Thomas},
journal = {Studia Mathematica},
keywords = {convolution operator; ultradifferentiable functions},
language = {eng},
number = {2},
pages = {101-129},
title = {Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type},
url = {http://eudml.org/doc/216426},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Meyer, Thomas
TI - Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 2
SP - 101
EP - 129
AB - Let $ε_{{ω}}(I)$ denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For $μ ∈ ε_{{ω}}(I)^{\prime }$ with $supp(μ) = {0}$ one can define the convolution operator $T_μ: ε_{{ω}}(I) → ε_{{ω}}(I)$, $T_μ(f)(x):= ⟨μ,f(x-·)⟩$. We give a characterization of the surjectivity of $T_μ$ for quasianalytic classes $ε_{{ω}}(I)$, where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform $\widehat{μ}$ of μ.
LA - eng
KW - convolution operator; ultradifferentiable functions
UR - http://eudml.org/doc/216426
ER -

References

top
  1. [1] L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, 1973. 
  2. [2] C. A. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable, Adv. in Math. 33 (1979), 109-143. Zbl0432.30028
  3. [3] A. Beurling, Quasianalyticity and general distributions, Lectures 4 and 5, Amer. Math. Soc. Summer Institute (Stanford, 1961). 
  4. [4] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1965), 351-407. 
  5. [5] R. W. Braun, A sufficient criterion for the vanishing of p r o j 1 for (DFS)-spectra, preprint. 
  6. [6] R. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237. Zbl0735.46022
  7. [7] R. W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultra-differentiable functions, Proc. London Math. Soc. (3) 61 (1990), 344-370. Zbl0699.46021
  8. [8] R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type, Math. Nachr. 168 (1994), 19-54. Zbl0848.35023
  9. [9] Yu. F. Korobeĭnik, Solvability of a convolution equation in some classes of analytic functions, Mat. Zametki 49 (2) (1991), 76-83 (in Russian); English transl.: Math. Notes 49 (1991), 165-172. 
  10. [10] G. Köthe, Topological Vector Spaces II, Grundlehren Math. Wiss. 237, Springer, 1979. Zbl0417.46001
  11. [11] M. Langenbruch, Hyperfunction fundamental solutions of surjective convolution operators on real analytic functions, J. Funct. Anal. 131 (1995), 78-93. Zbl0841.46025
  12. [12] R. Meise, Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211-230. Zbl0702.46024
  13. [13] R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59-95. Zbl0574.46043
  14. [14] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756. Zbl0637.46037
  15. [15] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992. 
  16. [16] T. Meyer, Die Fourier-Laplace-Transformation quasianalytischer Funktionale und ihre Anwendung auf Faltungsoperatoren, Diplomarbeit, Düsseldorf, 1989. 
  17. [17] T. Meyer, Surjektivität von Faltungsoperatoren auf Räumen ultradifferenzierbarer Funktionen vom Roumieu Typ, Thesis, Düsseldorf, 1992. 
  18. [18] S. Momm, Closed principal ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55. Zbl0804.46066
  19. [19] S. Momm, Convolution equations on the analytic functions on convex domains in the plane, Bull. Sci. Math. 118 (1994), 259-270. Zbl0819.46039
  20. [20] S. Momm, Ideale in gewichteten Algebren holomorpher Funktionen auf dem Einheitskreis, Dissertation, Düsseldorf, 1988. Zbl0657.32009
  21. [21] V. V. Napalkov and I. A. Rudakov, Convolution operator in the space of real analytic functions, Mat. Zametki 49 (3) (1991), 57-65 (in Russian); English transl.: Math. Notes 49 (1991), 266-271. Zbl0763.47012
  22. [22] V. P. Palamodov, The projective limit functor in the category of linear topological spaces, Math. USSR-Sb. 4 (1968), 529-559. Zbl0175.41801
  23. [23] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. (3) 77 (1960), 41-121. Zbl0104.33403
  24. [24] B. A. Taylor, Analytically uniform spaces of infinitely differentiable functions, Comm. Pure Appl. Math. 24 (1971), 39-51. Zbl0205.41501
  25. [25] D. Vogt, Lectures on projective spectra of (DF)-spaces, Universität Wuppertal, 1987. 
  26. [26] D. Vogt, Topics on projective spectra of (LB)-spaces, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer, Dordrecht, 1989, 11-27. 
  27. [27] D. Vogt, Regularity properties of (LF)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre (eds.), North-Holland Math. Stud. 170, North-Holland, 1992, 57-84. Zbl0779.46005
  28. [28] J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996), 247-258. Zbl0863.46002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.