On the range of convolution operators on non-quasianalytic ultradifferentiable functions

Jóse Bonet; Antonio Galbis; R. Meise

Studia Mathematica (1997)

  • Volume: 126, Issue: 2, page 171-198
  • ISSN: 0039-3223

Abstract

top
Let ( ω ) ( Ω ) denote the non-quasianalytic class of Beurling type on an open set Ω in n . For μ ( ω ) ' ( n ) the surjectivity of the convolution operator T μ : ( ω ) ( Ω 1 ) ( ω ) ( Ω 2 ) is characterized by various conditions, e.g. in terms of a convexity property of the pair ( Ω 1 , Ω 2 ) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator S μ : D ω ' ( Ω 1 ) D ω ' ( Ω 2 ) between ultradistributions of Roumieu type whenever μ ω ' ( n ) . These results extend classical work of Hörmander on convolution operators between spaces of C -functions and more recent one of Ciorănescu and Braun, Meise and Vogt.

How to cite

top

Bonet, Jóse, Galbis, Antonio, and Meise, R.. "On the range of convolution operators on non-quasianalytic ultradifferentiable functions." Studia Mathematica 126.2 (1997): 171-198. <http://eudml.org/doc/216450>.

@article{Bonet1997,
abstract = {Let $ℇ_\{(ω)\}(Ω)$ denote the non-quasianalytic class of Beurling type on an open set Ω in $ℝ^n$. For $μ ∈ ℇ^\{\prime \}_\{(ω)\}(ℝ^n)$ the surjectivity of the convolution operator $T_μ: ℇ_\{(ω)\}(Ω_1) → ℇ_\{(ω)\}(Ω_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair $(Ω_1, Ω_2)$ and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator $S_μ: D^\{\prime \}_\{\{ω\}\}(Ω_1) → D^\{\prime \}_\{\{ω\}\}(Ω_2)$ between ultradistributions of Roumieu type whenever $μ ∈ ℇ^\{\prime \}_\{\{ω\}\}(ℝ^n)$. These results extend classical work of Hörmander on convolution operators between spaces of $C^∞$-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.},
author = {Bonet, Jóse, Galbis, Antonio, Meise, R.},
journal = {Studia Mathematica},
keywords = {non-quasianalytic class of Beurling type; surjectivity of the convolution operator; ultradistributions of Roumieu},
language = {eng},
number = {2},
pages = {171-198},
title = {On the range of convolution operators on non-quasianalytic ultradifferentiable functions},
url = {http://eudml.org/doc/216450},
volume = {126},
year = {1997},
}

TY - JOUR
AU - Bonet, Jóse
AU - Galbis, Antonio
AU - Meise, R.
TI - On the range of convolution operators on non-quasianalytic ultradifferentiable functions
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 2
SP - 171
EP - 198
AB - Let $ℇ_{(ω)}(Ω)$ denote the non-quasianalytic class of Beurling type on an open set Ω in $ℝ^n$. For $μ ∈ ℇ^{\prime }_{(ω)}(ℝ^n)$ the surjectivity of the convolution operator $T_μ: ℇ_{(ω)}(Ω_1) → ℇ_{(ω)}(Ω_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair $(Ω_1, Ω_2)$ and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator $S_μ: D^{\prime }_{{ω}}(Ω_1) → D^{\prime }_{{ω}}(Ω_2)$ between ultradistributions of Roumieu type whenever $μ ∈ ℇ^{\prime }_{{ω}}(ℝ^n)$. These results extend classical work of Hörmander on convolution operators between spaces of $C^∞$-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.
LA - eng
KW - non-quasianalytic class of Beurling type; surjectivity of the convolution operator; ultradistributions of Roumieu
UR - http://eudml.org/doc/216450
ER -

References

top
  1. [1] C. A. Berenstein and M. A. Dostal, Analytically Uniform Spaces and Their Applications to Convolution Equations, Lecture Notes in Math. 256, Springer, 1972. Zbl0237.47025
  2. [2] K. D. Bierstedt, R. Meise and B. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. Zbl0599.46026
  3. [3] J. Bonet and A. Galbis, The range of non-surjective convolution operators on Beurling spaces, Glasgow Math. J. 38 (1996), 125-135. Zbl0861.46025
  4. [4] J. Bonet, A. Galbis and S. Momm, Nonradial Hörmander algebras of several variables, manuscript. 
  5. [5] R. W. Braun, An extension of Komatsu's second structure theorem for ultradistributions, J. Fac. Sci. Univ. Tokyo 40 (1993), 411-417. Zbl0811.46031
  6. [6] W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237. Zbl0735.46022
  7. [7] W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370. Zbl0699.46021
  8. [8] Chou, La Transformation de Fourier Complexe et l'Équation de Convolution, Lecture Notes in Math. 325, Springer, 1973. Zbl0257.46037
  9. [9] I. Ciorănescu, Convolution equations in ω-ultradistribution spaces, Rev. Roumaine Math. Pures Appl. 25 (1980), 719-737. Zbl0438.46030
  10. [10] L. Ehrenpreis, Solution of some problems of division, Part IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588. Zbl0098.08401
  11. [11] U. Franken and R. Meise, Generalized Fourier expansions for zero-solutions of surjective convolution operators on D’ℝ and D ω ' , Note Mat. 10, Suppl. 1 (1990), 251-272. 
  12. [12] O. v. Grudzinski, Konstruktion von Fundamentallösungen für Convolutoren, Manuscripta Math. 19 (1976), 283-317. Zbl0327.35010
  13. [13] S. Hansen, Das Fundamentalprinzip für Systeme linearer partieller Differentialgleichungen mit konstanten Koeffizienten, Habilitationsschrift, Paderborn, 1982. 
  14. [14] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170. Zbl0109.08501
  15. [15] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton Univ. Press, 1967. Zbl0138.06203
  16. [16] L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983. Zbl0521.35002
  17. [17] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105. Zbl0258.46039
  18. [18] M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275. Zbl0859.35019
  19. [19] R. Meise and B. A. Taylor, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat. 26 (1988), 265-287. Zbl0683.46020
  20. [20] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756. Zbl0637.46037
  21. [21] R. Meise, B. A. Taylor and D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213-242. Zbl0858.46030
  22. [22] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, 1997. Zbl0924.46002
  23. [23] T. Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), 101-129. Zbl0897.46023
  24. [24] S. Momm, Closed ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55. Zbl0804.46066
  25. [25] S. Momm, Division problems in spaces of entire functions of finite order, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess and D. Vogt (eds.), Marcel Dekker, 1993, 435-457. Zbl0803.46025
  26. [26] S. Momm, A Phragmén-Lindelöf theorem for plurisubharmonic functions on cones in N , Indiana Univ. Math. J. 41 (1992), 861-867. Zbl0765.32010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.