On the range of convolution operators on non-quasianalytic ultradifferentiable functions
Jóse Bonet; Antonio Galbis; R. Meise
Studia Mathematica (1997)
- Volume: 126, Issue: 2, page 171-198
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBonet, Jóse, Galbis, Antonio, and Meise, R.. "On the range of convolution operators on non-quasianalytic ultradifferentiable functions." Studia Mathematica 126.2 (1997): 171-198. <http://eudml.org/doc/216450>.
@article{Bonet1997,
abstract = {Let $ℇ_\{(ω)\}(Ω)$ denote the non-quasianalytic class of Beurling type on an open set Ω in $ℝ^n$. For $μ ∈ ℇ^\{\prime \}_\{(ω)\}(ℝ^n)$ the surjectivity of the convolution operator $T_μ: ℇ_\{(ω)\}(Ω_1) → ℇ_\{(ω)\}(Ω_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair $(Ω_1, Ω_2)$ and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator $S_μ: D^\{\prime \}_\{\{ω\}\}(Ω_1) → D^\{\prime \}_\{\{ω\}\}(Ω_2)$ between ultradistributions of Roumieu type whenever $μ ∈ ℇ^\{\prime \}_\{\{ω\}\}(ℝ^n)$. These results extend classical work of Hörmander on convolution operators between spaces of $C^∞$-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.},
author = {Bonet, Jóse, Galbis, Antonio, Meise, R.},
journal = {Studia Mathematica},
keywords = {non-quasianalytic class of Beurling type; surjectivity of the convolution operator; ultradistributions of Roumieu},
language = {eng},
number = {2},
pages = {171-198},
title = {On the range of convolution operators on non-quasianalytic ultradifferentiable functions},
url = {http://eudml.org/doc/216450},
volume = {126},
year = {1997},
}
TY - JOUR
AU - Bonet, Jóse
AU - Galbis, Antonio
AU - Meise, R.
TI - On the range of convolution operators on non-quasianalytic ultradifferentiable functions
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 2
SP - 171
EP - 198
AB - Let $ℇ_{(ω)}(Ω)$ denote the non-quasianalytic class of Beurling type on an open set Ω in $ℝ^n$. For $μ ∈ ℇ^{\prime }_{(ω)}(ℝ^n)$ the surjectivity of the convolution operator $T_μ: ℇ_{(ω)}(Ω_1) → ℇ_{(ω)}(Ω_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair $(Ω_1, Ω_2)$ and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator $S_μ: D^{\prime }_{{ω}}(Ω_1) → D^{\prime }_{{ω}}(Ω_2)$ between ultradistributions of Roumieu type whenever $μ ∈ ℇ^{\prime }_{{ω}}(ℝ^n)$. These results extend classical work of Hörmander on convolution operators between spaces of $C^∞$-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.
LA - eng
KW - non-quasianalytic class of Beurling type; surjectivity of the convolution operator; ultradistributions of Roumieu
UR - http://eudml.org/doc/216450
ER -
References
top- [1] C. A. Berenstein and M. A. Dostal, Analytically Uniform Spaces and Their Applications to Convolution Equations, Lecture Notes in Math. 256, Springer, 1972. Zbl0237.47025
- [2] K. D. Bierstedt, R. Meise and B. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160. Zbl0599.46026
- [3] J. Bonet and A. Galbis, The range of non-surjective convolution operators on Beurling spaces, Glasgow Math. J. 38 (1996), 125-135. Zbl0861.46025
- [4] J. Bonet, A. Galbis and S. Momm, Nonradial Hörmander algebras of several variables, manuscript.
- [5] R. W. Braun, An extension of Komatsu's second structure theorem for ultradistributions, J. Fac. Sci. Univ. Tokyo 40 (1993), 411-417. Zbl0811.46031
- [6] W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237. Zbl0735.46022
- [7] W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370. Zbl0699.46021
- [8] Chou, La Transformation de Fourier Complexe et l'Équation de Convolution, Lecture Notes in Math. 325, Springer, 1973. Zbl0257.46037
- [9] I. Ciorănescu, Convolution equations in ω-ultradistribution spaces, Rev. Roumaine Math. Pures Appl. 25 (1980), 719-737. Zbl0438.46030
- [10] L. Ehrenpreis, Solution of some problems of division, Part IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588. Zbl0098.08401
- [11] U. Franken and R. Meise, Generalized Fourier expansions for zero-solutions of surjective convolution operators on D’ℝ and , Note Mat. 10, Suppl. 1 (1990), 251-272.
- [12] O. v. Grudzinski, Konstruktion von Fundamentallösungen für Convolutoren, Manuscripta Math. 19 (1976), 283-317. Zbl0327.35010
- [13] S. Hansen, Das Fundamentalprinzip für Systeme linearer partieller Differentialgleichungen mit konstanten Koeffizienten, Habilitationsschrift, Paderborn, 1982.
- [14] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170. Zbl0109.08501
- [15] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton Univ. Press, 1967. Zbl0138.06203
- [16] L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983. Zbl0521.35002
- [17] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105. Zbl0258.46039
- [18] M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275. Zbl0859.35019
- [19] R. Meise and B. A. Taylor, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat. 26 (1988), 265-287. Zbl0683.46020
- [20] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756. Zbl0637.46037
- [21] R. Meise, B. A. Taylor and D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213-242. Zbl0858.46030
- [22] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, 1997. Zbl0924.46002
- [23] T. Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), 101-129. Zbl0897.46023
- [24] S. Momm, Closed ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55. Zbl0804.46066
- [25] S. Momm, Division problems in spaces of entire functions of finite order, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess and D. Vogt (eds.), Marcel Dekker, 1993, 435-457. Zbl0803.46025
- [26] S. Momm, A Phragmén-Lindelöf theorem for plurisubharmonic functions on cones in , Indiana Univ. Math. J. 41 (1992), 861-867. Zbl0765.32010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.