Second order elliptic operators with complex bounded measurable coefficients in , Sobolev and Hardy spaces
Steve Hofmann; Svitlana Mayboroda; Alan McIntosh
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 5, page 723-800
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topHofmann, Steve, Mayboroda, Svitlana, and McIntosh, Alan. "Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces." Annales scientifiques de l'École Normale Supérieure 44.5 (2011): 723-800. <http://eudml.org/doc/272188>.
@article{Hofmann2011,
abstract = {Let $L$ be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with $L$, such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in $L^p$, Sobolev, and some new Hardy spaces naturally associated to $L$.
First, we show that the known ranges of boundedness in $L^p$ for the heat semigroup and Riesz transform of $L$, are sharp. In particular, the heat semigroup $e^\{-tL\}$ need not be bounded in $L^p$ if $p\notin [2n/(n+2),2n/(n-2)]$. Then we provide a complete description ofallSobolev spaces in which $L$ admits a bounded functional calculus, in particular, where $e^\{-tL\}$ is bounded.
Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to $L$, that serves the range of $p$ beyond $[2n/(n+2),2n/(n-2)]$. It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of $p$), as well as the molecular decomposition and duality and interpolation theorems.},
author = {Hofmann, Steve, Mayboroda, Svitlana, McIntosh, Alan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hardy and Lipschitz spaces; elliptic operators; complex coefficients; heat semigroup; Riesz transform},
language = {eng},
number = {5},
pages = {723-800},
publisher = {Société mathématique de France},
title = {Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces},
url = {http://eudml.org/doc/272188},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Hofmann, Steve
AU - Mayboroda, Svitlana
AU - McIntosh, Alan
TI - Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 5
SP - 723
EP - 800
AB - Let $L$ be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with $L$, such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in $L^p$, Sobolev, and some new Hardy spaces naturally associated to $L$.
First, we show that the known ranges of boundedness in $L^p$ for the heat semigroup and Riesz transform of $L$, are sharp. In particular, the heat semigroup $e^{-tL}$ need not be bounded in $L^p$ if $p\notin [2n/(n+2),2n/(n-2)]$. Then we provide a complete description ofallSobolev spaces in which $L$ admits a bounded functional calculus, in particular, where $e^{-tL}$ is bounded.
Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to $L$, that serves the range of $p$ beyond $[2n/(n+2),2n/(n-2)]$. It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of $p$), as well as the molecular decomposition and duality and interpolation theorems.
LA - eng
KW - Hardy and Lipschitz spaces; elliptic operators; complex coefficients; heat semigroup; Riesz transform
UR - http://eudml.org/doc/272188
ER -
References
top- [1] D. Albrecht, X. Duong & A. McIntosh, Operator theory and harmonic analysis, in Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ. 34, Austral. Nat. Univ., 1996, 77–136. Zbl0903.47010MR1394696
- [2] J. Alvarez & M. Milman, Spaces of Carleson measures: duality and interpolation, Ark. Mat.25 (1987), 155–174. Zbl0638.42020MR923404
- [3] J. Alvarez & M. Milman, Interpolation of tent spaces and applications, in Function spaces and applications (Lund, 1986), Lecture Notes in Math. 1302, Springer, 1988, 11–21. Zbl0662.46076MR942254
- [4] P. Auscher, Some questions on elliptic operators, in Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., 2003, 1–10. Zbl1183.35093MR2039949
- [5] P. Auscher, On estimates for square roots of second order elliptic operators on , Publ. Mat.48 (2004), 159–186. Zbl1107.42003MR2044643
- [6] P. Auscher, On necessary and sufficient conditions for -estimates of Riesz transforms associated to elliptic operators on and related estimates, Mem. Amer. Math. Soc. 186 (2007). Zbl1221.42022MR2292385
- [7] P. Auscher & T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci.4 (2005), 531–555. Zbl1116.58023MR2185868
- [8] P. Auscher, T. Coulhon & P. Tchamitchian, Absence de principe du maximum pour certaines équations paraboliques complexes, Colloq. Math.71 (1996), 87–95. Zbl0960.35011MR1397370
- [9] P. Auscher, X. T. Duong & A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, preprint, 2005.
- [10] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh & P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on , Ann. of Math.156 (2002), 633–654. Zbl1128.35316MR1933726
- [11] P. Auscher, A. McIntosh & E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal.18 (2008), 192–248. Zbl1217.42043MR2365673
- [12] P. Auscher & E. Russ, Hardy spaces and divergence operators on strongly Lipschitz domains of , J. Funct. Anal.201 (2003), 148–184. Zbl1033.42019MR1986158
- [13] P. Auscher & P. Tchamitchian, Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux), Ann. Inst. Fourier (Grenoble) 45 (1995), 721–778. Zbl0819.35028MR1340951
- [14] P. Auscher & P. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998). Zbl0909.35001MR1651262
- [15] A. Bernal, Some results on complex interpolation of spaces, in Interpolation spaces and related topics (Haifa, 1990), Israel Math. Conf. Proc. 5, Bar-Ilan Univ., 1992, 1–10. Zbl0890.46051MR1206486
- [16] A. Bernal & J. Cerdà, Complex interpolation of quasi-Banach spaces with an -convex containing space, Ark. Mat.29 (1991), 183–201. Zbl0757.41031MR1150372
- [17] S. Blunck & P. C. Kunstmann, Calderón-Zygmund theory for non-integral operators and the functional calculus, Rev. Mat. Iberoamericana19 (2003), 919–942. Zbl1057.42010MR2053568
- [18] S. Blunck & P. C. Kunstmann, Weak type estimates for Riesz transforms, Math. Z.247 (2004), 137–148. Zbl1138.35315MR2054523
- [19] A.-P. Calderón & A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), 101–171. Zbl0355.46021MR450888
- [20] W. S. Cohn & I. E. Verbitsky, Factorization of tent spaces and Hankel operators, J. Funct. Anal.175 (2000), 308–329. Zbl0968.46022MR1780479
- [21] R. R. Coifman, A real variable characterization of , Studia Math.51 (1974), 269–274. Zbl0289.46037MR358318
- [22] R. R. Coifman, Y. Meyer & E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal.62 (1985), 304–335. Zbl0569.42016MR791851
- [23] R. R. Coifman & G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc.83 (1977), 569–645. Zbl0358.30023MR447954
- [24] M. Cwikel, M. Milman & Y. Sagher, Complex interpolation of some quasi-Banach spaces, J. Funct. Anal.65 (1986), 339–347. Zbl0586.46054
- [25] E. B. Davies, Limits on regularity of self-adjoint elliptic operators, J. Differential Equations135 (1997), 83–102. Zbl0871.35020MR1434916
- [26] X. T. Duong, J. Xiao & L. Yan, Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl.13 (2007), 87–111. Zbl1133.42017
- [27] X. T. Duong & L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc.18 (2005), 943–973. Zbl1078.42013
- [28] X. T. Duong & L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math.58 (2005), 1375–1420. Zbl1153.26305
- [29] P. L. Duren, B. W. Romberg & A. L. Shields, Linear functionals on spaces with , J. reine angew. Math. 238 (1969), 32–60. Zbl0176.43102
- [30] J. Dziubański & M. Preisner, Riesz transform characterization of Hardy spaces associated with Schrödinger operators with compactly supported potentials, Ark. Mat.48 (2010), 301–310. Zbl1202.42046
- [31] J. Dziubański & J. Zienkiewicz, Hardy spaces associated with some Schrödinger operators, Studia Math.126 (1997), 149–160. Zbl0918.42013
- [32] C. Fefferman & E. M. Stein, spaces of several variables, Acta Math.129 (1972), 137–193. Zbl0257.46078MR447953
- [33] M. Frazier & B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal.93 (1990), 34–170. Zbl0716.46031MR1070037
- [34] J. Frehse, An irregular complex valued solution to a scalar uniformly elliptic equation, Calc. Var. Partial Differential Equations33 (2008), 263–266. Zbl1157.35026MR2429531
- [35] J. García-Cuerva & J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116, North-Holland Publishing Co., 1985. Zbl0578.46046MR848136
- [36] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Math. Studies 105, Princeton Univ. Press, 1983. Zbl0516.49003
- [37] M. E. Gomez & M. Milman, Complex interpolation of spaces on product domains, Ann. Mat. Pura Appl.155 (1989), 103–115. Zbl0712.46040MR1042830
- [38] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea & L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, preprint http://www.math.wayne.edu/~gzlu/papers/HLMMY22.pdf. Zbl1232.42018
- [39] S. Hofmann & J. M. Martell, bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat.47 (2003), 497–515. Zbl1074.35031MR2006497
- [40] S. Hofmann & S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann.344 (2009), 37–116. Zbl1162.42012MR2481054
- [41] S. Hofmann & S. Mayboroda, Correction to [40], preprint arXiv:0907.0129. MR1568562
- [42] T. Hytönen, J. van Neerven & P. Portal, Conical square function estimates in UMD Banach spaces and applications to -functional calculi, J. Anal. Math.106 (2008), 317–351. Zbl1165.46015MR2448989
- [43] S. Janson & P. W. Jones, Interpolation between spaces: the complex method, J. Funct. Anal.48 (1982), 58–80. Zbl0507.46047MR671315
- [44] R. Jiang & D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal.258 (2010), 1167–1224. Zbl1205.46014MR2565837
- [45] N. Kalton, S. Mayboroda & M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations, in Interpolation theory and applications, Contemp. Math. 445, Amer. Math. Soc., 2007, 121–177. Zbl1158.46013MR2381891
- [46] N. Kalton & M. Mitrea, Stability of fredholm properties on interpolation scales of quasi-Banach spaces and applications, Trans. Amer. Math. Soc.350 (1998), 3837–3901. Zbl0902.46002MR1443193
- [47] R. H. Latter, A characterization of in terms of atoms, Studia Math.62 (1978), 93–101. Zbl0398.42017MR482111
- [48] J. M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math.161 (2004), 113–145. Zbl1044.42019
- [49] S. Mayboroda, The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients, Adv. Math.225 (2010), 1786–1819. Zbl1203.35087
- [50] V. G. Mazʼya, S. A. Nazarov & B. A. Plamenevskiĭ, Absence of a De Giorgi-type theorem for strongly elliptic equations with complex coefficients, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982), 156–168. Zbl0498.35033
- [51] A. McIntosh, Operators which have an functional calculus, in Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., 1986, 210–231. Zbl0634.47016
- [52] O. Mendez & M. Mitrea, The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations, J. Fourier Anal. Appl.6 (2000), 503–531. Zbl0972.46017
- [53] N. G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc.15 (1964), 717–721. Zbl0129.04002
- [54] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton Univ. Press, 1993. Zbl0821.42001
- [55] E. M. Stein & G. Weiss, On the theory of harmonic functions of several variables. I. The theory of -spaces, Acta Math. 103 (1960), 25–62. Zbl0097.28501
- [56] M. H. Taibleson & G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque77 (1980), 67–149. Zbl0472.46041
- [57] H. Triebel, Theory of function spaces, Monographs in Math. 78, Birkhäuser, 1983. Zbl0546.46027
- [58] T. H. Wolff, A note on interpolation spaces, in Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math. 908, Springer, 1982, 199–204. Zbl0517.46054MR654187
- [59] L. Yan, Classes of Hardy spaces associated with operators, duality theorem and applications, Trans. Amer. Math. Soc.360 (2008), 4383–4408. Zbl1273.42022MR2395177
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.