Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann; Svitlana Mayboroda; Alan McIntosh

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 5, page 723-800
  • ISSN: 0012-9593

Abstract

top
Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show that the known ranges of boundedness in  L p for the heat semigroup and Riesz transform of  L , are sharp. In particular, the heat semigroup e - t L need not be bounded in  L p if p [ 2 n / ( n + 2 ) , 2 n / ( n - 2 ) ] . Then we provide a complete description ofallSobolev spaces in which L admits a bounded functional calculus, in particular, where e - t L is bounded. Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to  L , that serves the range of  p beyond [ 2 n / ( n + 2 ) , 2 n / ( n - 2 ) ] . It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of  p ), as well as the molecular decomposition and duality and interpolation theorems.

How to cite

top

Hofmann, Steve, Mayboroda, Svitlana, and McIntosh, Alan. "Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces." Annales scientifiques de l'École Normale Supérieure 44.5 (2011): 723-800. <http://eudml.org/doc/272188>.

@article{Hofmann2011,
abstract = {Let $L$ be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with $L$, such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in $L^p$, Sobolev, and some new Hardy spaces naturally associated to $L$. First, we show that the known ranges of boundedness in $L^p$ for the heat semigroup and Riesz transform of $L$, are sharp. In particular, the heat semigroup $e^\{-tL\}$ need not be bounded in $L^p$ if $p\notin [2n/(n+2),2n/(n-2)]$. Then we provide a complete description ofallSobolev spaces in which $L$ admits a bounded functional calculus, in particular, where $e^\{-tL\}$ is bounded. Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to $L$, that serves the range of $p$ beyond $[2n/(n+2),2n/(n-2)]$. It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of $p$), as well as the molecular decomposition and duality and interpolation theorems.},
author = {Hofmann, Steve, Mayboroda, Svitlana, McIntosh, Alan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hardy and Lipschitz spaces; elliptic operators; complex coefficients; heat semigroup; Riesz transform},
language = {eng},
number = {5},
pages = {723-800},
publisher = {Société mathématique de France},
title = {Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces},
url = {http://eudml.org/doc/272188},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Hofmann, Steve
AU - Mayboroda, Svitlana
AU - McIntosh, Alan
TI - Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 5
SP - 723
EP - 800
AB - Let $L$ be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with $L$, such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in $L^p$, Sobolev, and some new Hardy spaces naturally associated to $L$. First, we show that the known ranges of boundedness in $L^p$ for the heat semigroup and Riesz transform of $L$, are sharp. In particular, the heat semigroup $e^{-tL}$ need not be bounded in $L^p$ if $p\notin [2n/(n+2),2n/(n-2)]$. Then we provide a complete description ofallSobolev spaces in which $L$ admits a bounded functional calculus, in particular, where $e^{-tL}$ is bounded. Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to $L$, that serves the range of $p$ beyond $[2n/(n+2),2n/(n-2)]$. It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of $p$), as well as the molecular decomposition and duality and interpolation theorems.
LA - eng
KW - Hardy and Lipschitz spaces; elliptic operators; complex coefficients; heat semigroup; Riesz transform
UR - http://eudml.org/doc/272188
ER -

References

top
  1. [1] D. Albrecht, X. Duong & A. McIntosh, Operator theory and harmonic analysis, in Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ. 34, Austral. Nat. Univ., 1996, 77–136. Zbl0903.47010MR1394696
  2. [2] J. Alvarez & M. Milman, Spaces of Carleson measures: duality and interpolation, Ark. Mat.25 (1987), 155–174. Zbl0638.42020MR923404
  3. [3] J. Alvarez & M. Milman, Interpolation of tent spaces and applications, in Function spaces and applications (Lund, 1986), Lecture Notes in Math. 1302, Springer, 1988, 11–21. Zbl0662.46076MR942254
  4. [4] P. Auscher, Some questions on elliptic operators, in Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., 2003, 1–10. Zbl1183.35093MR2039949
  5. [5] P. Auscher, On L p estimates for square roots of second order elliptic operators on n , Publ. Mat.48 (2004), 159–186. Zbl1107.42003MR2044643
  6. [6] P. Auscher, On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on n and related estimates, Mem. Amer. Math. Soc. 186 (2007). Zbl1221.42022MR2292385
  7. [7] P. Auscher & T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci.4 (2005), 531–555. Zbl1116.58023MR2185868
  8. [8] P. Auscher, T. Coulhon & P. Tchamitchian, Absence de principe du maximum pour certaines équations paraboliques complexes, Colloq. Math.71 (1996), 87–95. Zbl0960.35011MR1397370
  9. [9] P. Auscher, X. T. Duong & A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, preprint, 2005. 
  10. [10] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh & P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on n , Ann. of Math.156 (2002), 633–654. Zbl1128.35316MR1933726
  11. [11] P. Auscher, A. McIntosh & E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal.18 (2008), 192–248. Zbl1217.42043MR2365673
  12. [12] P. Auscher & E. Russ, Hardy spaces and divergence operators on strongly Lipschitz domains of n , J. Funct. Anal.201 (2003), 148–184. Zbl1033.42019MR1986158
  13. [13] P. Auscher & P. Tchamitchian, Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux), Ann. Inst. Fourier (Grenoble) 45 (1995), 721–778. Zbl0819.35028MR1340951
  14. [14] P. Auscher & P. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998). Zbl0909.35001MR1651262
  15. [15] A. Bernal, Some results on complex interpolation of T q p spaces, in Interpolation spaces and related topics (Haifa, 1990), Israel Math. Conf. Proc. 5, Bar-Ilan Univ., 1992, 1–10. Zbl0890.46051MR1206486
  16. [16] A. Bernal & J. Cerdà, Complex interpolation of quasi-Banach spaces with an A -convex containing space, Ark. Mat.29 (1991), 183–201. Zbl0757.41031MR1150372
  17. [17] S. Blunck & P. C. Kunstmann, Calderón-Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iberoamericana19 (2003), 919–942. Zbl1057.42010MR2053568
  18. [18] S. Blunck & P. C. Kunstmann, Weak type ( p , p ) estimates for Riesz transforms, Math. Z.247 (2004), 137–148. Zbl1138.35315MR2054523
  19. [19] A.-P. Calderón & A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), 101–171. Zbl0355.46021MR450888
  20. [20] W. S. Cohn & I. E. Verbitsky, Factorization of tent spaces and Hankel operators, J. Funct. Anal.175 (2000), 308–329. Zbl0968.46022MR1780479
  21. [21] R. R. Coifman, A real variable characterization of H p , Studia Math.51 (1974), 269–274. Zbl0289.46037MR358318
  22. [22] R. R. Coifman, Y. Meyer & E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal.62 (1985), 304–335. Zbl0569.42016MR791851
  23. [23] R. R. Coifman & G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc.83 (1977), 569–645. Zbl0358.30023MR447954
  24. [24] M. Cwikel, M. Milman & Y. Sagher, Complex interpolation of some quasi-Banach spaces, J. Funct. Anal.65 (1986), 339–347. Zbl0586.46054
  25. [25] E. B. Davies, Limits on L p regularity of self-adjoint elliptic operators, J. Differential Equations135 (1997), 83–102. Zbl0871.35020MR1434916
  26. [26] X. T. Duong, J. Xiao & L. Yan, Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl.13 (2007), 87–111. Zbl1133.42017
  27. [27] X. T. Duong & L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc.18 (2005), 943–973. Zbl1078.42013
  28. [28] X. T. Duong & L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math.58 (2005), 1375–1420. Zbl1153.26305
  29. [29] P. L. Duren, B. W. Romberg & A. L. Shields, Linear functionals on H p spaces with 0 l t ; p l t ; 1 , J. reine angew. Math. 238 (1969), 32–60. Zbl0176.43102
  30. [30] J. Dziubański & M. Preisner, Riesz transform characterization of Hardy spaces associated with Schrödinger operators with compactly supported potentials, Ark. Mat.48 (2010), 301–310. Zbl1202.42046
  31. [31] J. Dziubański & J. Zienkiewicz, Hardy spaces associated with some Schrödinger operators, Studia Math.126 (1997), 149–160. Zbl0918.42013
  32. [32] C. Fefferman & E. M. Stein, H p spaces of several variables, Acta Math.129 (1972), 137–193. Zbl0257.46078MR447953
  33. [33] M. Frazier & B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal.93 (1990), 34–170. Zbl0716.46031MR1070037
  34. [34] J. Frehse, An irregular complex valued solution to a scalar uniformly elliptic equation, Calc. Var. Partial Differential Equations33 (2008), 263–266. Zbl1157.35026MR2429531
  35. [35] J. García-Cuerva & J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116, North-Holland Publishing Co., 1985. Zbl0578.46046MR848136
  36. [36] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Math. Studies 105, Princeton Univ. Press, 1983. Zbl0516.49003
  37. [37] M. E. Gomez & M. Milman, Complex interpolation of H p spaces on product domains, Ann. Mat. Pura Appl.155 (1989), 103–115. Zbl0712.46040MR1042830
  38. [38] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea & L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, preprint http://www.math.wayne.edu/~gzlu/papers/HLMMY22.pdf. Zbl1232.42018
  39. [39] S. Hofmann & J. M. Martell, L p bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat.47 (2003), 497–515. Zbl1074.35031MR2006497
  40. [40] S. Hofmann & S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann.344 (2009), 37–116. Zbl1162.42012MR2481054
  41. [41] S. Hofmann & S. Mayboroda, Correction to [40], preprint arXiv:0907.0129. MR1568562
  42. [42] T. Hytönen, J. van Neerven & P. Portal, Conical square function estimates in UMD Banach spaces and applications to H -functional calculi, J. Anal. Math.106 (2008), 317–351. Zbl1165.46015MR2448989
  43. [43] S. Janson & P. W. Jones, Interpolation between H p spaces: the complex method, J. Funct. Anal.48 (1982), 58–80. Zbl0507.46047MR671315
  44. [44] R. Jiang & D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal.258 (2010), 1167–1224. Zbl1205.46014MR2565837
  45. [45] N. Kalton, S. Mayboroda & M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations, in Interpolation theory and applications, Contemp. Math. 445, Amer. Math. Soc., 2007, 121–177. Zbl1158.46013MR2381891
  46. [46] N. Kalton & M. Mitrea, Stability of fredholm properties on interpolation scales of quasi-Banach spaces and applications, Trans. Amer. Math. Soc.350 (1998), 3837–3901. Zbl0902.46002MR1443193
  47. [47] R. H. Latter, A characterization of H p ( 𝐑 n ) in terms of atoms, Studia Math.62 (1978), 93–101. Zbl0398.42017MR482111
  48. [48] J. M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math.161 (2004), 113–145. Zbl1044.42019
  49. [49] S. Mayboroda, The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients, Adv. Math.225 (2010), 1786–1819. Zbl1203.35087
  50. [50] V. G. Mazʼya, S. A. Nazarov & B. A. Plamenevskiĭ, Absence of a De Giorgi-type theorem for strongly elliptic equations with complex coefficients, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982), 156–168. Zbl0498.35033
  51. [51] A. McIntosh, Operators which have an H functional calculus, in Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., 1986, 210–231. Zbl0634.47016
  52. [52] O. Mendez & M. Mitrea, The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations, J. Fourier Anal. Appl.6 (2000), 503–531. Zbl0972.46017
  53. [53] N. G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc.15 (1964), 717–721. Zbl0129.04002
  54. [54] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton Univ. Press, 1993. Zbl0821.42001
  55. [55] E. M. Stein & G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H p -spaces, Acta Math. 103 (1960), 25–62. Zbl0097.28501
  56. [56] M. H. Taibleson & G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque77 (1980), 67–149. Zbl0472.46041
  57. [57] H. Triebel, Theory of function spaces, Monographs in Math. 78, Birkhäuser, 1983. Zbl0546.46027
  58. [58] T. H. Wolff, A note on interpolation spaces, in Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math. 908, Springer, 1982, 199–204. Zbl0517.46054MR654187
  59. [59] L. Yan, Classes of Hardy spaces associated with operators, duality theorem and applications, Trans. Amer. Math. Soc.360 (2008), 4383–4408. Zbl1273.42022MR2395177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.