Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces

Ioan Şerb

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 1, page 107-119
  • ISSN: 0010-2628

Abstract

top
Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus μ X of the normed space X . The values of the rectangular modulus at some noteworthy points are well-known constants of X . Characterizations (involving μ X ) of inner product spaces of dimension 2 , respectively 3 , are given and the behaviour of μ X is studied.

How to cite

top

Şerb, Ioan. "Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 107-119. <http://eudml.org/doc/248376>.

@article{Şerb1999,
abstract = {Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus $\mu _\{_X\}$ of the normed space $X$. The values of the rectangular modulus at some noteworthy points are well-known constants of $X$. Characterizations (involving $\mu _\{_X\})$ of inner product spaces of dimension $\ge 2$, respectively $\ge 3$, are given and the behaviour of $\mu _\{_X\}$ is studied.},
author = {Şerb, Ioan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {characterizations of inner product spaces; orthogonality; moduli of Banach spaces; inner product spaces; orthogonality; moduli of Banach spaces},
language = {eng},
number = {1},
pages = {107-119},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces},
url = {http://eudml.org/doc/248376},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Şerb, Ioan
TI - Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 107
EP - 119
AB - Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus $\mu _{_X}$ of the normed space $X$. The values of the rectangular modulus at some noteworthy points are well-known constants of $X$. Characterizations (involving $\mu _{_X})$ of inner product spaces of dimension $\ge 2$, respectively $\ge 3$, are given and the behaviour of $\mu _{_X}$ is studied.
LA - eng
KW - characterizations of inner product spaces; orthogonality; moduli of Banach spaces; inner product spaces; orthogonality; moduli of Banach spaces
UR - http://eudml.org/doc/248376
ER -

References

top
  1. Alonso J., Ortogonalidad en espacios normados, Ph.D. Thesis, Universidad de Extremadura, 1984. MR0823479
  2. Alonso J., Benitez C., Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory 55 (1988), 318-325. (1988) Zbl0675.41047MR0968938
  3. Amir D., Characterizations of Inner Product Spaces, Birkhauser Verlag, Basel-Boston-Stuttgart, 1986. Zbl0617.46030MR0897527
  4. Baronti M., Su alcune parametri degli spazi normati, Boll. Un. Mat. Ital. 5 (18)-B (1981), 1065-1085. (1981) 
  5. Baronti M., Papini L., Projections, skewness and related constants in real normed spaces, Math. Pannon. 3 (1992), 31-47. (1992) Zbl0763.46008MR1170536
  6. Benitez C., Przeslawski K., Yost D., A universal modulus for normed spaces, Studia Math. 127 1 (1998), 21-46. (1998) Zbl0909.46008MR1488142
  7. Day M.M., Uniform convexity in factor and conjugate spaces Ann. of Math. (2), 45 (1944), 375-385. (1944) MR0010779
  8. Desbiens J., Constante rectangle et bias d'un espace de Banach, Bull. Austral. Math. Soc. 42 (1990), 465-482. (1990) MR1083283
  9. Desbiens J., Sur les constantes de Thele et de Schäffer, Ann. Sci. Math. Québec 16 (2) (1992), 129-141. (1992) Zbl0788.46018MR1199184
  10. Franchetti C., On the radial projection in Banach spaces, in Approximation Theory III (ed. by E.W. Cheney), pp.425-428, Academic Press, New York, 1980. Zbl0483.46012MR0602747
  11. James R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. (1947) Zbl0037.08001MR0021241
  12. Joly J.L., Caracterizations d'espaces hilbertiens au moyen de la constante rectangle, J. Approx. Theory 2 (1969), 301-311. (1969) MR0270126
  13. Lindenstrauss J., On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963), 241-252. (1963) Zbl0115.10001MR0169061
  14. Nordlander G., The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15-17. (1960) Zbl0092.11402MR0140915
  15. del Rio M., Benitez C., The rectangular constant for two-dimensional spaces, J. Approx. Theory 19 (1977), 15-21. (1977) Zbl0343.46018MR0448039
  16. Şerb I., On the behaviour of the tangential modulus of a Banach space I, Revue d'Analyse Numérique et de Théorie de l'Approximation 24 (1995), 241-248. (1995) MR1608428
  17. Şerb I., On the behaviour of the tangential modulus of a Banach space II, Mathematica (Cluj) 38 (61) (1996), 199-207. (1996) MR1606805
  18. Şerb I., A Day-Nordlander theorem for the tangential modulus of a normed space, J. Math. Anal. Appl. 209 (1997), 381-391. (1997) MR1474615
  19. Smith M.A., On the norms of metric projections, J. Approx. Theory 31 (1981), 224-229. (1981) Zbl0477.46022MR0624010
  20. Thele R.L., Some results on the radial projection in Banach spaces, Proc. Amer. Math. Soc. 42 (1974), 2 483-486. (1974) Zbl0276.46015MR0328550
  21. Ullán de Celis A., Modulos de convexidad y lisura en espacios normados, Ph.D. Thesis, Universidad de Extremadura, 1991. MR1174971

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.