Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 1, page 107-119
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topŞerb, Ioan. "Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 107-119. <http://eudml.org/doc/248376>.
@article{Şerb1999,
abstract = {Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus $\mu _\{_X\}$ of the normed space $X$. The values of the rectangular modulus at some noteworthy points are well-known constants of $X$. Characterizations (involving $\mu _\{_X\})$ of inner product spaces of dimension $\ge 2$, respectively $\ge 3$, are given and the behaviour of $\mu _\{_X\}$ is studied.},
author = {Şerb, Ioan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {characterizations of inner product spaces; orthogonality; moduli of Banach spaces; inner product spaces; orthogonality; moduli of Banach spaces},
language = {eng},
number = {1},
pages = {107-119},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces},
url = {http://eudml.org/doc/248376},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Şerb, Ioan
TI - Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 107
EP - 119
AB - Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus $\mu _{_X}$ of the normed space $X$. The values of the rectangular modulus at some noteworthy points are well-known constants of $X$. Characterizations (involving $\mu _{_X})$ of inner product spaces of dimension $\ge 2$, respectively $\ge 3$, are given and the behaviour of $\mu _{_X}$ is studied.
LA - eng
KW - characterizations of inner product spaces; orthogonality; moduli of Banach spaces; inner product spaces; orthogonality; moduli of Banach spaces
UR - http://eudml.org/doc/248376
ER -
References
top- Alonso J., Ortogonalidad en espacios normados, Ph.D. Thesis, Universidad de Extremadura, 1984. MR0823479
- Alonso J., Benitez C., Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory 55 (1988), 318-325. (1988) Zbl0675.41047MR0968938
- Amir D., Characterizations of Inner Product Spaces, Birkhauser Verlag, Basel-Boston-Stuttgart, 1986. Zbl0617.46030MR0897527
- Baronti M., Su alcune parametri degli spazi normati, Boll. Un. Mat. Ital. 5 (18)-B (1981), 1065-1085. (1981)
- Baronti M., Papini L., Projections, skewness and related constants in real normed spaces, Math. Pannon. 3 (1992), 31-47. (1992) Zbl0763.46008MR1170536
- Benitez C., Przeslawski K., Yost D., A universal modulus for normed spaces, Studia Math. 127 1 (1998), 21-46. (1998) Zbl0909.46008MR1488142
- Day M.M., Uniform convexity in factor and conjugate spaces Ann. of Math. (2), 45 (1944), 375-385. (1944) MR0010779
- Desbiens J., Constante rectangle et bias d'un espace de Banach, Bull. Austral. Math. Soc. 42 (1990), 465-482. (1990) MR1083283
- Desbiens J., Sur les constantes de Thele et de Schäffer, Ann. Sci. Math. Québec 16 (2) (1992), 129-141. (1992) Zbl0788.46018MR1199184
- Franchetti C., On the radial projection in Banach spaces, in Approximation Theory III (ed. by E.W. Cheney), pp.425-428, Academic Press, New York, 1980. Zbl0483.46012MR0602747
- James R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. (1947) Zbl0037.08001MR0021241
- Joly J.L., Caracterizations d'espaces hilbertiens au moyen de la constante rectangle, J. Approx. Theory 2 (1969), 301-311. (1969) MR0270126
- Lindenstrauss J., On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963), 241-252. (1963) Zbl0115.10001MR0169061
- Nordlander G., The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15-17. (1960) Zbl0092.11402MR0140915
- del Rio M., Benitez C., The rectangular constant for two-dimensional spaces, J. Approx. Theory 19 (1977), 15-21. (1977) Zbl0343.46018MR0448039
- Şerb I., On the behaviour of the tangential modulus of a Banach space I, Revue d'Analyse Numérique et de Théorie de l'Approximation 24 (1995), 241-248. (1995) MR1608428
- Şerb I., On the behaviour of the tangential modulus of a Banach space II, Mathematica (Cluj) 38 (61) (1996), 199-207. (1996) MR1606805
- Şerb I., A Day-Nordlander theorem for the tangential modulus of a normed space, J. Math. Anal. Appl. 209 (1997), 381-391. (1997) MR1474615
- Smith M.A., On the norms of metric projections, J. Approx. Theory 31 (1981), 224-229. (1981) Zbl0477.46022MR0624010
- Thele R.L., Some results on the radial projection in Banach spaces, Proc. Amer. Math. Soc. 42 (1974), 2 483-486. (1974) Zbl0276.46015MR0328550
- Ullán de Celis A., Modulos de convexidad y lisura en espacios normados, Ph.D. Thesis, Universidad de Extremadura, 1991. MR1174971
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.