Sur les isométries partielles maximales essentielles

Haïkel Skhiri

Studia Mathematica (1998)

  • Volume: 128, Issue: 2, page 135-144
  • ISSN: 0039-3223

Abstract

top
We study the problem of approximation by the sets S + K(H), S e , V + K(H) and V e where H is a separable complex Hilbert space, K(H) is the ideal of compact operators, S = L B ( H ) : L * L = I is the set of isometries, V = S ∪ S* is the set of maximal partial isometries, S e = L B ( H ) : π ( L * ) π ( L ) = π ( I ) and V e = S e S e * where π : B(H) → B(H)/K(H) denotes the canonical projection. We also prove that all the relevant distances are attained. This implies that all these classes are closed and we remark that V e = V + K ( H ) . We also show that S + K(H) is both closed and open in S e . Finally, we prove that V e , S + K(H) and S e coincide with their boundaries ( V e ) , ∂(S + K(H)) and ( S e ) respectively.

How to cite

top

Skhiri, Haïkel. "Sur les isométries partielles maximales essentielles." Studia Mathematica 128.2 (1998): 135-144. <http://eudml.org/doc/216479>.

@article{Skhiri1998,
author = {Skhiri, Haïkel},
journal = {Studia Mathematica},
keywords = {ideal of compact operators; set of isometries; set of maximal partial isometries; canonical projection},
language = {fre},
number = {2},
pages = {135-144},
title = {Sur les isométries partielles maximales essentielles},
url = {http://eudml.org/doc/216479},
volume = {128},
year = {1998},
}

TY - JOUR
AU - Skhiri, Haïkel
TI - Sur les isométries partielles maximales essentielles
JO - Studia Mathematica
PY - 1998
VL - 128
IS - 2
SP - 135
EP - 144
LA - fre
KW - ideal of compact operators; set of isometries; set of maximal partial isometries; canonical projection
UR - http://eudml.org/doc/216479
ER -

References

top
  1. [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294. 
  2. [2] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. Zbl0483.47015
  3. [3] R. Bouldin, Approximation by semi-Fredholm operators with fixed nullity, Rocky Mountain J. Math. 20 (1990), 39-50. Zbl0727.47006
  4. [4] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990. Zbl0706.46003
  5. [5] R. S. Doran and V. A. Belfi, Characterizations of C*-algebras. The Gelfand-Naimark Theorems, M. Dekker, New York, 1986. Zbl0597.46056
  6. [6] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192. Zbl0246.47006
  7. [7] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. Zbl0148.12501
  8. [8] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967. 
  9. [9] P. de la Harpe, Initiation à l'algèbre de Calkin, Lecture Notes in Math. 725, Springer, 1978, 180-219. Zbl0402.46036
  10. [10] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982. Zbl0494.47001
  11. [11] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. Zbl0148.12601
  12. [12] D. D. Rogers, Approximation by unitary and essentially unitary operators, Acta Sci. Math. (Szeged) 39 (1977), 141-151. Zbl0367.47006
  13. [13] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980. Zbl0434.47001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.