Isometric embedding into spaces of continuous functions
Studia Mathematica (1998)
- Volume: 129, Issue: 3, page 197-205
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topVilla, Rafael. "Isometric embedding into spaces of continuous functions." Studia Mathematica 129.3 (1998): 197-205. <http://eudml.org/doc/216500>.
@article{Villa1998,
abstract = {We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between $C_0(α+1)$ and $C_0(β+1)$.},
author = {Villa, Rafael},
journal = {Studia Mathematica},
keywords = {metric space; Banach space; metric linear dimension; isometric embedding},
language = {eng},
number = {3},
pages = {197-205},
title = {Isometric embedding into spaces of continuous functions},
url = {http://eudml.org/doc/216500},
volume = {129},
year = {1998},
}
TY - JOUR
AU - Villa, Rafael
TI - Isometric embedding into spaces of continuous functions
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 3
SP - 197
EP - 205
AB - We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between $C_0(α+1)$ and $C_0(β+1)$.
LA - eng
KW - metric space; Banach space; metric linear dimension; isometric embedding
UR - http://eudml.org/doc/216500
ER -
References
top- [1] S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1933. Zbl0067.08902
- [2] C. Bessaga and A. Pełczyński, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] T. Figiel, On non-linear isometric embeddings of normed linear spaces, Bull. Acad. Polon. Sci. 16 (1968), 185-188. Zbl0155.18301
- [5] S. Mazur et S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948. Zbl58.0423.01
- [6] S. Rolewicz, Metric Linear Spaces, Reidel and PWN, Dordrecht and Warszawa, 1985.
- [7] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
- [8] W. Sierpiński, Cardinal and Ordinal Numbers, PWN, Warszawa, 1958.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.