Hull-minimal ideals in the Schwartz algebra of the Heisenberg group

J. Ludwig

Studia Mathematica (1998)

  • Volume: 130, Issue: 1, page 77-98
  • ISSN: 0039-3223

Abstract

top
For every closed subset C in the dual space Ĥ n of the Heisenberg group H n we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra S ( H n ) and we show that in general for two closed subsets C 1 , C 2 of Ĥ n the product of j ( C 1 ) and j ( C 2 ) is different from j ( C 1 C 2 ) .

How to cite

top

Ludwig, J.. "Hull-minimal ideals in the Schwartz algebra of the Heisenberg group." Studia Mathematica 130.1 (1998): 77-98. <http://eudml.org/doc/216542>.

@article{Ludwig1998,
abstract = {For every closed subset C in the dual space $Ĥ_n$ of the Heisenberg group $H_n$ we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra $S(H_n)$ and we show that in general for two closed subsets $C_1, C_2$ of $Ĥ_n$ the product of $j(C_1)$ and $j(C_2)$ is different from $j(C_1∩C_2)$.},
author = {Ludwig, J.},
journal = {Studia Mathematica},
keywords = {Fréchet algebra; dual space; Heisenberg group; Fourier transform; hull-minimal ideal; Schwartz algebra},
language = {eng},
number = {1},
pages = {77-98},
title = {Hull-minimal ideals in the Schwartz algebra of the Heisenberg group},
url = {http://eudml.org/doc/216542},
volume = {130},
year = {1998},
}

TY - JOUR
AU - Ludwig, J.
TI - Hull-minimal ideals in the Schwartz algebra of the Heisenberg group
JO - Studia Mathematica
PY - 1998
VL - 130
IS - 1
SP - 77
EP - 98
AB - For every closed subset C in the dual space $Ĥ_n$ of the Heisenberg group $H_n$ we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra $S(H_n)$ and we show that in general for two closed subsets $C_1, C_2$ of $Ĥ_n$ the product of $j(C_1)$ and $j(C_2)$ is different from $j(C_1∩C_2)$.
LA - eng
KW - Fréchet algebra; dual space; Heisenberg group; Fourier transform; hull-minimal ideal; Schwartz algebra
UR - http://eudml.org/doc/216542
ER -

References

top
  1. [BD] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. Zbl0271.46039
  2. [CG] L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications Cambridge Univ. Press, 1990. 
  3. [Di1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969. 
  4. [Di2] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Etudes Sci. Publ. Math. 6 (1960), 305-317. Zbl0100.32303
  5. [FO] G. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. 
  6. [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, 1982. Zbl0508.42025
  7. [Hu] A. Hulanicki, A functional calculus for Rockland oerators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. Zbl0595.43007
  8. [Lu1] J. Ludwig, Polynomial growth and ideals in group algebras, Manuscripta Math. 30 (1980), 215-221. Zbl0417.43005
  9. [Lu2] J. Ludwig, Minimal C*-dense ideals and algebraically irreducible representations of the Schwartz-algebra of a nilpotent Lie group, in: Harmonic Analysis, Springer, 1987, 209-217. 
  10. [Lu3] J. Ludwig, Topologically irreducible of the Schwartz-algebra a nilpotent Lie group, Arch. Math. (Basel) 54 (1990), 284-292. Zbl0664.43002
  11. [LM] J. Ludwig et C. Molitor-Braun, L'algèbre de Schwartz d'un groupe de Lie nilpotent, Travaux de Mathématiques Publications du C.U. Luxembourg, 1996. 
  12. [LRS] J. Ludwig, G. Rosenbaum and J. Samuel, The elements of bounded trace in the C*-algebra of a nilpotent Lie group, Invent. Math. 83 (1986), 167-190. Zbl0587.22003
  13. [LZ] J. Ludwig and H. Zahir, On the nilpotent Fourier transform, Lett. math. Phys. 30, (1994), 23-34. Zbl0798.22004
  14. [Rei] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monographs, Oxford Univ. Press, 1968. Zbl0165.15601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.