Reverse-Holder classes in the Orlicz spaces setting
E. Harboure; O. Salinas; B. Viviani
Studia Mathematica (1998)
- Volume: 130, Issue: 3, page 245-261
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHarboure, E., Salinas, O., and Viviani, B.. "Reverse-Holder classes in the Orlicz spaces setting." Studia Mathematica 130.3 (1998): 245-261. <http://eudml.org/doc/216556>.
@article{Harboure1998,
abstract = {In connection with the $A_ϕ $ classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes $RH_ϕ$. We prove that when ϕ is $Δ_2$ and has lower index greater than one, the class $RH_ϕ$ coincides with some reverse-Hölder class $RH_q,q>1$. For more general ϕ we still get $RH_ϕ ⊂ A_∞ = ⋃_\{q>1\}RH_q$ although the intersection of all these $RH_ϕ$ gives a proper subset of $⋂_\{q>1\}RH_q$.},
author = {Harboure, E., Salinas, O., Viviani, B.},
journal = {Studia Mathematica},
keywords = {reverse-Hölder class; $A_p$ classes of Muckenhoupt; Orlicz spaces; class of Muckenhoupt; Orlicz space},
language = {eng},
number = {3},
pages = {245-261},
title = {Reverse-Holder classes in the Orlicz spaces setting},
url = {http://eudml.org/doc/216556},
volume = {130},
year = {1998},
}
TY - JOUR
AU - Harboure, E.
AU - Salinas, O.
AU - Viviani, B.
TI - Reverse-Holder classes in the Orlicz spaces setting
JO - Studia Mathematica
PY - 1998
VL - 130
IS - 3
SP - 245
EP - 261
AB - In connection with the $A_ϕ $ classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes $RH_ϕ$. We prove that when ϕ is $Δ_2$ and has lower index greater than one, the class $RH_ϕ$ coincides with some reverse-Hölder class $RH_q,q>1$. For more general ϕ we still get $RH_ϕ ⊂ A_∞ = ⋃_{q>1}RH_q$ although the intersection of all these $RH_ϕ$ gives a proper subset of $⋂_{q>1}RH_q$.
LA - eng
KW - reverse-Hölder class; $A_p$ classes of Muckenhoupt; Orlicz spaces; class of Muckenhoupt; Orlicz space
UR - http://eudml.org/doc/216556
ER -
References
top- [B-K] S. Bloom and R. Kerman, Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator, Studia Math. 110 (1994), 149-167. Zbl0813.42014
- [CU-N] D. Cruz-Uribe, and C. J. Neugebauer, The structure of the reverse-Hölder classes, Trans. Amer. Math. Soc. 345 (1995), 2941-2960. Zbl0851.42016
- [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. Zbl0291.44007
- [F] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158. Zbl0751.46023
- [K-K] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Sci., Singapore, 1991. Zbl0751.46021
- [K-T] R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 278-284. Zbl0517.42030
- [S-T] J. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1281, Springer, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.