The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fragmentability and compactness in C(K)-spaces”

Functional separability

Ronnie Levy, M. Matveev (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples...

The Baire property in remainders of topological groups and other results

Aleksander V. Arhangel'skii (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is established that a remainder of a non-locally compact topological group G has the Baire property if and only if the space G is not Čech-complete. We also show that if G is a non-locally compact topological group of countable tightness, then either G is submetrizable, or G is the Čech-Stone remainder of an arbitrary remainder Y of G . It follows that if G and H are non-submetrizable topological groups of countable tightness such that some remainders of G and H are homeomorphic, then...

Convex functions with non-Borel set of Gâteaux differentiability points

Petr Holický, M. Šmídek, Luděk Zajíček (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function f such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function f on 1 ( 𝔠 ) .

Space of Baire functions. I

J. E. Jayne (1974)

Annales de l'institut Fourier

Similarity:

Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of K -analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either 0 , 1 , or Ω (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces...