# The uniform zero-two law for positive operators in Banach lattices

Studia Mathematica (1998)

- Volume: 131, Issue: 2, page 149-153
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topLin, Michael. "The uniform zero-two law for positive operators in Banach lattices." Studia Mathematica 131.2 (1998): 149-153. <http://eudml.org/doc/216571>.

@article{Lin1998,

abstract = {},

author = {Lin, Michael},

journal = {Studia Mathematica},

keywords = {zero-two law; positive power-bounded operators; Banach lattice},

language = {eng},

number = {2},

pages = {149-153},

title = {The uniform zero-two law for positive operators in Banach lattices},

url = {http://eudml.org/doc/216571},

volume = {131},

year = {1998},

}

TY - JOUR

AU - Lin, Michael

TI - The uniform zero-two law for positive operators in Banach lattices

JO - Studia Mathematica

PY - 1998

VL - 131

IS - 2

SP - 149

EP - 153

AB -

LA - eng

KW - zero-two law; positive power-bounded operators; Banach lattice

UR - http://eudml.org/doc/216571

ER -

## References

top- [AR] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79. Zbl0705.46021
- [B] D. Berend, A note on the ${L}^{p}$ analogue of the “zero-two” law, Proc. Amer. Math. Soc. 114 (1992), 95-97. Zbl0754.47023
- [F] S. R. Foguel, More on the "zero-two" law, ibid. 61 (1976), 262-264.
- [FWe] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, ibid. 38 (1973), 325-330. Zbl0268.47014
- [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 312-328. Zbl0611.47005
- [M] J. Martinez, A representation lattice isomorphism for the peripheral spectrum, Proc. Amer. Math. Soc. 119 (1993), 489-492. Zbl0805.47031
- [OSu] D. Ornstein and L. Sucheston, An operator theorem on ${L}^{1}$ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. Zbl0284.60068
- [S1] H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974. Zbl0296.47023
- [S2] H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244. Zbl0657.47041
- [Sc] A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), 493-496. Zbl0702.47019
- [W1] R. Wittmann, Analogues of the zero-two law for positive contractions in ${L}^{p}$ and C(X), Israel J. Math. 59 (1987), 8-28. Zbl0654.46034
- [W2]] R. Wittmann, Ein starkes “Null-Zwei"-Gesetz in ${L}^{p}$, Math. Z. 197 (1988), 223-229.
- [Z1] R. Zaharopol, The modulus of a regular operator and the “zero-two” law in ${L}^{p}$-spaces (1 < p < ∞, p ≠ 2), J. Funct. Anal. 68 (1986), 300-312. Zbl0613.47038
- [Z2] R. Zaharopol, Uniform monotonicity of norms and the strong "zero-two" law, J. Math. Anal. Appl. 139 (1989), 217-225. Zbl0688.47014
- [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. Zbl0822.47005

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.