The uniform zero-two law for positive operators in Banach lattices

Michael Lin

Studia Mathematica (1998)

  • Volume: 131, Issue: 2, page 149-153
  • ISSN: 0039-3223

How to cite

top

Lin, Michael. "The uniform zero-two law for positive operators in Banach lattices." Studia Mathematica 131.2 (1998): 149-153. <http://eudml.org/doc/216571>.

@article{Lin1998,
abstract = {},
author = {Lin, Michael},
journal = {Studia Mathematica},
keywords = {zero-two law; positive power-bounded operators; Banach lattice},
language = {eng},
number = {2},
pages = {149-153},
title = {The uniform zero-two law for positive operators in Banach lattices},
url = {http://eudml.org/doc/216571},
volume = {131},
year = {1998},
}

TY - JOUR
AU - Lin, Michael
TI - The uniform zero-two law for positive operators in Banach lattices
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 2
SP - 149
EP - 153
AB -
LA - eng
KW - zero-two law; positive power-bounded operators; Banach lattice
UR - http://eudml.org/doc/216571
ER -

References

top
  1. [AR] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79. Zbl0705.46021
  2. [B] D. Berend, A note on the L p analogue of the “zero-two” law, Proc. Amer. Math. Soc. 114 (1992), 95-97. Zbl0754.47023
  3. [F] S. R. Foguel, More on the "zero-two" law, ibid. 61 (1976), 262-264. 
  4. [FWe] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, ibid. 38 (1973), 325-330. Zbl0268.47014
  5. [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 312-328. Zbl0611.47005
  6. [M] J. Martinez, A representation lattice isomorphism for the peripheral spectrum, Proc. Amer. Math. Soc. 119 (1993), 489-492. Zbl0805.47031
  7. [OSu] D. Ornstein and L. Sucheston, An operator theorem on L 1 convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. Zbl0284.60068
  8. [S1] H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974. Zbl0296.47023
  9. [S2] H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244. Zbl0657.47041
  10. [Sc] A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), 493-496. Zbl0702.47019
  11. [W1] R. Wittmann, Analogues of the zero-two law for positive contractions in L p and C(X), Israel J. Math. 59 (1987), 8-28. Zbl0654.46034
  12. [W2]] R. Wittmann, Ein starkes “Null-Zwei"-Gesetz in L p , Math. Z. 197 (1988), 223-229. 
  13. [Z1] R. Zaharopol, The modulus of a regular operator and the “zero-two” law in L p -spaces (1 < p < ∞, p ≠ 2), J. Funct. Anal. 68 (1986), 300-312. Zbl0613.47038
  14. [Z2] R. Zaharopol, Uniform monotonicity of norms and the strong "zero-two" law, J. Math. Anal. Appl. 139 (1989), 217-225. Zbl0688.47014
  15. [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. Zbl0822.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.