Almost everywhere convergence of convolution powers on compact abelian groups
Jean-Pierre Conze; Michael Lin
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 550-568
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topConze, Jean-Pierre, and Lin, Michael. "Almost everywhere convergence of convolution powers on compact abelian groups." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 550-568. <http://eudml.org/doc/272032>.
@article{Conze2013,
abstract = {It is well-known that a probability measure $\mu $ on the circle $\mathbb \{T\}$ satisfies $\Vert \mu ^\{n\}*f-\int f\,\mathrm \{d\}m\Vert _\{p\}\rightarrow 0$ for every $f\in L_\{p\}$, every (some) $p\in [1,\infty )$, if and only if $|\hat\{\mu \}(n)|<1$ for every non-zero $n\in \mathbb \{Z\}$ ($\mu $ is strictly aperiodic). In this paper we study the a.e. convergence of $\mu ^\{n\}*f$ for every $f\in L_\{p\}$ whenever $p>1$. We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of $\mu $, for the strong sweeping out property (existence of a Borel set $B$ with $\limsup \mu ^\{n\}*1_\{B\}=1$ a.e. and $\liminf \mu ^\{n\}*1_\{B\}=0$ a.e.). The results are extended to general compact Abelian groups $G$ with Haar measure $m$, and as a corollary we obtain the dichotomy: for $\mu $ strictly aperiodic, either $\mu ^\{n\}*f\rightarrow \int f\,\mathrm \{d\}m$ a.e. for every $p>1$ and every $f\in L_\{p\}(G,m)$, or $\mu $ has the strong sweeping out property.},
author = {Conze, Jean-Pierre, Lin, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {convolution powers; almost everywhere convergence; sweeping out; strictly aperiodic probabilities; Abelian groups},
language = {eng},
number = {2},
pages = {550-568},
publisher = {Gauthier-Villars},
title = {Almost everywhere convergence of convolution powers on compact abelian groups},
url = {http://eudml.org/doc/272032},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Conze, Jean-Pierre
AU - Lin, Michael
TI - Almost everywhere convergence of convolution powers on compact abelian groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 550
EP - 568
AB - It is well-known that a probability measure $\mu $ on the circle $\mathbb {T}$ satisfies $\Vert \mu ^{n}*f-\int f\,\mathrm {d}m\Vert _{p}\rightarrow 0$ for every $f\in L_{p}$, every (some) $p\in [1,\infty )$, if and only if $|\hat{\mu }(n)|<1$ for every non-zero $n\in \mathbb {Z}$ ($\mu $ is strictly aperiodic). In this paper we study the a.e. convergence of $\mu ^{n}*f$ for every $f\in L_{p}$ whenever $p>1$. We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of $\mu $, for the strong sweeping out property (existence of a Borel set $B$ with $\limsup \mu ^{n}*1_{B}=1$ a.e. and $\liminf \mu ^{n}*1_{B}=0$ a.e.). The results are extended to general compact Abelian groups $G$ with Haar measure $m$, and as a corollary we obtain the dichotomy: for $\mu $ strictly aperiodic, either $\mu ^{n}*f\rightarrow \int f\,\mathrm {d}m$ a.e. for every $p>1$ and every $f\in L_{p}(G,m)$, or $\mu $ has the strong sweeping out property.
LA - eng
KW - convolution powers; almost everywhere convergence; sweeping out; strictly aperiodic probabilities; Abelian groups
UR - http://eudml.org/doc/272032
ER -
References
top- [1] M. Anoussis and D. Gatzouras. A spectral radius formula for the Fourier transform on compact groups and applications to random walks. Adv. Math.188 (2004) 425–443. Zbl1058.43006MR2087233
- [2] R. N. Bhattacharya. Speed of convergence of the -fold convolution of a probability measure on a compact group. Z. Wahrsch. Verw. Gebiete25 (1972) 1–10. Zbl0247.60008MR326795
- [3] A. Bellow and R. Jones. A Banach principle for . Adv. Math.120 (1996) 155–172. Zbl0878.46020MR1392277
- [4] A. Bellow, R. Jones and J. Rosenblatt. Almost everywhere convergence of powers. In Almost Everywhere Convergence 99–120. G. Edgar and L. Sucheston (Eds). Academic Press, Boston, MA, 1989. Zbl0694.60021MR1035239
- [5] A. Bellow, R. Jones and J. Rosenblatt. Almost everywhere convergence of convolution powers. Ergodic Theory Dynam. Systems14 (1994) 415–432. Zbl0818.28005MR1293401
- [6] D. Burkholder. Successive conditional expectations of an integrable function. Ann. Math. Statist.33 (1962) 887–893. Zbl0128.12602MR143246
- [7] G. Cohen. Iterates of a product of conditional expectation operators. J. Funct. Anal.242 (2007) 658–668. Zbl1128.47011MR2274825
- [8] A. del Junco and J. Rosenblatt. Counterexamples in ergodic theory and number theory. Math. Ann.245 (1979) 185–197. Zbl0398.28021MR553340
- [9] Y. Derriennic and M. Lin. Variance bounding Markov chains, -uniform mean ergodicity and the CLT. Stoch. Dyn.11 (2011) 81–94. Zbl1210.60026MR2771343
- [10] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers, 5th edition. Clarendon Press, New York, 1979. Zbl0086.25803MR568909JFM64.0093.03
- [11] S. Horowitz. Pointwise convergence of the iterates of a Harris-recurrent Markov operator. Israel J. Math.33 (1979) 177–180. Zbl0435.60068MR571528
- [12] R. Jones, J. Rosenblatt and A. Tempelman. Ergodic theorems for convolutions of a measure on a group. Illinois J. Math.38 (1994) 521–553. Zbl0831.28008MR1283007
- [13] U. Krengel. Ergodic Theorems. De Gruyter, Berlin, 1985. Zbl0575.28009MR797411
- [14] M. Lin. The uniform zero-two law for positive operators in Banach lattices. Studia Math.131 (1998) 149–153. Zbl0939.47007MR1636419
- [15] V. Losert. A remark on almost everywhere convergence of convolution powers. Illinois J. Math.43 (1999) 465–479. Zbl0963.28014MR1700602
- [16] V. Losert. The strong sweeping out property for convolution powers. Ergodic Theory Dynam. Systems21 (2001) 115–119. Zbl0972.37002MR1826663
- [17] D. Ornstein. On the pointwise behavior of iterates of a self-adjoint operator. J. Math. Mech.18 (1968) 473–477. Zbl0182.47103MR236354
- [18] V. Oseledets. Markov chains, skew products and ergodic theorems for “general” dynamic systems. Theory Probab. Appl.10 (1965) 499–504. Zbl0142.14405MR189123
- [19] F. Parreau. Measures with real spectra. Invent. Math.98 (1989) 311–330. Zbl0707.43002MR1016267
- [20] J. Rosenblatt. Ergodic group actions. Arch. Math. (Basel) 47 (1986) 263–269. Zbl0583.28006MR861875
- [21] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, Berlin, 1971. Zbl0236.60002MR329037
- [22] K. A. Ross and D. Xu. Norm convergence of random walks on compact hypergroups. Math. Z.214 (1993) 415–423. Zbl0796.60007MR1245203
- [23] J.-C. Rota. An “Alternierende Verfahren” for general positive operators. Bull. Amer. Math. Soc.68 (1962) 95–102. Zbl0116.10403MR133847
- [24] W. Rudin. Fourier Analysis on Groups. Interscience, New York, 1962. Zbl0698.43001MR152834
- [25] E. M. Stein. On the maximal ergodic theorem. Proc. Natl. Acad. Sci. USA47 (1961) 1894–1897. Zbl0182.47102MR131517
- [26] N. Varopoulos. Sets of multiplicity in locally compact Abelian groups. Ann. Inst. Fourier16 (1966) 123–158. Zbl0145.03501MR212508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.