Almost everywhere convergence of convolution powers on compact abelian groups

Jean-Pierre Conze; Michael Lin

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 2, page 550-568
  • ISSN: 0246-0203

Abstract

top
It is well-known that a probability measure μ on the circle 𝕋 satisfies μ n * f - f d m p 0 for every f L p , every (some) p [ 1 , ) , if and only if | μ ^ ( n ) | l t ; 1 for every non-zero n ( μ is strictly aperiodic). In this paper we study the a.e. convergence of μ n * f for every f L p whenever p g t ; 1 . We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of μ , for the strong sweeping out property (existence of a Borel set B with lim sup μ n * 1 B = 1 a.e. and lim inf μ n * 1 B = 0 a.e.). The results are extended to general compact Abelian groups G with Haar measure m , and as a corollary we obtain the dichotomy: for μ strictly aperiodic, either μ n * f f d m a.e. for every p g t ; 1 and every f L p ( G , m ) , or μ has the strong sweeping out property.

How to cite

top

Conze, Jean-Pierre, and Lin, Michael. "Almost everywhere convergence of convolution powers on compact abelian groups." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 550-568. <http://eudml.org/doc/272032>.

@article{Conze2013,
abstract = {It is well-known that a probability measure $\mu $ on the circle $\mathbb \{T\}$ satisfies $\Vert \mu ^\{n\}*f-\int f\,\mathrm \{d\}m\Vert _\{p\}\rightarrow 0$ for every $f\in L_\{p\}$, every (some) $p\in [1,\infty )$, if and only if $|\hat\{\mu \}(n)|&lt;1$ for every non-zero $n\in \mathbb \{Z\}$ ($\mu $ is strictly aperiodic). In this paper we study the a.e. convergence of $\mu ^\{n\}*f$ for every $f\in L_\{p\}$ whenever $p&gt;1$. We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of $\mu $, for the strong sweeping out property (existence of a Borel set $B$ with $\limsup \mu ^\{n\}*1_\{B\}=1$ a.e. and $\liminf \mu ^\{n\}*1_\{B\}=0$ a.e.). The results are extended to general compact Abelian groups $G$ with Haar measure $m$, and as a corollary we obtain the dichotomy: for $\mu $ strictly aperiodic, either $\mu ^\{n\}*f\rightarrow \int f\,\mathrm \{d\}m$ a.e. for every $p&gt;1$ and every $f\in L_\{p\}(G,m)$, or $\mu $ has the strong sweeping out property.},
author = {Conze, Jean-Pierre, Lin, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {convolution powers; almost everywhere convergence; sweeping out; strictly aperiodic probabilities; Abelian groups},
language = {eng},
number = {2},
pages = {550-568},
publisher = {Gauthier-Villars},
title = {Almost everywhere convergence of convolution powers on compact abelian groups},
url = {http://eudml.org/doc/272032},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Conze, Jean-Pierre
AU - Lin, Michael
TI - Almost everywhere convergence of convolution powers on compact abelian groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 550
EP - 568
AB - It is well-known that a probability measure $\mu $ on the circle $\mathbb {T}$ satisfies $\Vert \mu ^{n}*f-\int f\,\mathrm {d}m\Vert _{p}\rightarrow 0$ for every $f\in L_{p}$, every (some) $p\in [1,\infty )$, if and only if $|\hat{\mu }(n)|&lt;1$ for every non-zero $n\in \mathbb {Z}$ ($\mu $ is strictly aperiodic). In this paper we study the a.e. convergence of $\mu ^{n}*f$ for every $f\in L_{p}$ whenever $p&gt;1$. We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of $\mu $, for the strong sweeping out property (existence of a Borel set $B$ with $\limsup \mu ^{n}*1_{B}=1$ a.e. and $\liminf \mu ^{n}*1_{B}=0$ a.e.). The results are extended to general compact Abelian groups $G$ with Haar measure $m$, and as a corollary we obtain the dichotomy: for $\mu $ strictly aperiodic, either $\mu ^{n}*f\rightarrow \int f\,\mathrm {d}m$ a.e. for every $p&gt;1$ and every $f\in L_{p}(G,m)$, or $\mu $ has the strong sweeping out property.
LA - eng
KW - convolution powers; almost everywhere convergence; sweeping out; strictly aperiodic probabilities; Abelian groups
UR - http://eudml.org/doc/272032
ER -

References

top
  1. [1] M. Anoussis and D. Gatzouras. A spectral radius formula for the Fourier transform on compact groups and applications to random walks. Adv. Math.188 (2004) 425–443. Zbl1058.43006MR2087233
  2. [2] R. N. Bhattacharya. Speed of convergence of the n -fold convolution of a probability measure on a compact group. Z. Wahrsch. Verw. Gebiete25 (1972) 1–10. Zbl0247.60008MR326795
  3. [3] A. Bellow and R. Jones. A Banach principle for L . Adv. Math.120 (1996) 155–172. Zbl0878.46020MR1392277
  4. [4] A. Bellow, R. Jones and J. Rosenblatt. Almost everywhere convergence of powers. In Almost Everywhere Convergence 99–120. G. Edgar and L. Sucheston (Eds). Academic Press, Boston, MA, 1989. Zbl0694.60021MR1035239
  5. [5] A. Bellow, R. Jones and J. Rosenblatt. Almost everywhere convergence of convolution powers. Ergodic Theory Dynam. Systems14 (1994) 415–432. Zbl0818.28005MR1293401
  6. [6] D. Burkholder. Successive conditional expectations of an integrable function. Ann. Math. Statist.33 (1962) 887–893. Zbl0128.12602MR143246
  7. [7] G. Cohen. Iterates of a product of conditional expectation operators. J. Funct. Anal.242 (2007) 658–668. Zbl1128.47011MR2274825
  8. [8] A. del Junco and J. Rosenblatt. Counterexamples in ergodic theory and number theory. Math. Ann.245 (1979) 185–197. Zbl0398.28021MR553340
  9. [9] Y. Derriennic and M. Lin. Variance bounding Markov chains, L 2 -uniform mean ergodicity and the CLT. Stoch. Dyn.11 (2011) 81–94. Zbl1210.60026MR2771343
  10. [10] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers, 5th edition. Clarendon Press, New York, 1979. Zbl0086.25803MR568909JFM64.0093.03
  11. [11] S. Horowitz. Pointwise convergence of the iterates of a Harris-recurrent Markov operator. Israel J. Math.33 (1979) 177–180. Zbl0435.60068MR571528
  12. [12] R. Jones, J. Rosenblatt and A. Tempelman. Ergodic theorems for convolutions of a measure on a group. Illinois J. Math.38 (1994) 521–553. Zbl0831.28008MR1283007
  13. [13] U. Krengel. Ergodic Theorems. De Gruyter, Berlin, 1985. Zbl0575.28009MR797411
  14. [14] M. Lin. The uniform zero-two law for positive operators in Banach lattices. Studia Math.131 (1998) 149–153. Zbl0939.47007MR1636419
  15. [15] V. Losert. A remark on almost everywhere convergence of convolution powers. Illinois J. Math.43 (1999) 465–479. Zbl0963.28014MR1700602
  16. [16] V. Losert. The strong sweeping out property for convolution powers. Ergodic Theory Dynam. Systems21 (2001) 115–119. Zbl0972.37002MR1826663
  17. [17] D. Ornstein. On the pointwise behavior of iterates of a self-adjoint operator. J. Math. Mech.18 (1968) 473–477. Zbl0182.47103MR236354
  18. [18] V. Oseledets. Markov chains, skew products and ergodic theorems for “general” dynamic systems. Theory Probab. Appl.10 (1965) 499–504. Zbl0142.14405MR189123
  19. [19] F. Parreau. Measures with real spectra. Invent. Math.98 (1989) 311–330. Zbl0707.43002MR1016267
  20. [20] J. Rosenblatt. Ergodic group actions. Arch. Math. (Basel) 47 (1986) 263–269. Zbl0583.28006MR861875
  21. [21] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, Berlin, 1971. Zbl0236.60002MR329037
  22. [22] K. A. Ross and D. Xu. Norm convergence of random walks on compact hypergroups. Math. Z.214 (1993) 415–423. Zbl0796.60007MR1245203
  23. [23] J.-C. Rota. An “Alternierende Verfahren” for general positive operators. Bull. Amer. Math. Soc.68 (1962) 95–102. Zbl0116.10403MR133847
  24. [24] W. Rudin. Fourier Analysis on Groups. Interscience, New York, 1962. Zbl0698.43001MR152834
  25. [25] E. M. Stein. On the maximal ergodic theorem. Proc. Natl. Acad. Sci. USA47 (1961) 1894–1897. Zbl0182.47102MR131517
  26. [26] N. Varopoulos. Sets of multiplicity in locally compact Abelian groups. Ann. Inst. Fourier16 (1966) 123–158. Zbl0145.03501MR212508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.