# Continuity of the Drazin inverse II

Studia Mathematica (1998)

- Volume: 131, Issue: 2, page 167-177
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKoliha, J., and Rakočević, V.. "Continuity of the Drazin inverse II." Studia Mathematica 131.2 (1998): 167-177. <http://eudml.org/doc/216573>.

@article{Koliha1998,

abstract = {We study the continuity of the generalized Drazin inverse for elements of Banach algebras and bounded linear operators on Banach spaces. This work extends the results obtained by the second author on the conventional Drazin inverse.},

author = {Koliha, J., Rakočević, V.},

journal = {Studia Mathematica},

keywords = {Banach algebra; bounded linear operator; generalized Drazin inverse; continuity of the Drazin inverse; continuity of the generalized Drazin inverse; Banach algebras},

language = {eng},

number = {2},

pages = {167-177},

title = {Continuity of the Drazin inverse II},

url = {http://eudml.org/doc/216573},

volume = {131},

year = {1998},

}

TY - JOUR

AU - Koliha, J.

AU - Rakočević, V.

TI - Continuity of the Drazin inverse II

JO - Studia Mathematica

PY - 1998

VL - 131

IS - 2

SP - 167

EP - 177

AB - We study the continuity of the generalized Drazin inverse for elements of Banach algebras and bounded linear operators on Banach spaces. This work extends the results obtained by the second author on the conventional Drazin inverse.

LA - eng

KW - Banach algebra; bounded linear operator; generalized Drazin inverse; continuity of the Drazin inverse; continuity of the generalized Drazin inverse; Banach algebras

UR - http://eudml.org/doc/216573

ER -

## References

top- [1] S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin inverse, Linear Algebra Appl. 10 (1975), 77-83. Zbl0301.15004
- [2] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979. Zbl0417.15002
- [3] S. R. Caradus, Generalized inverses and operator theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., Kingston, Ont., 1978.
- [4] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514. Zbl0083.02901
- [5] I. C. Gohberg and A. S. Markus, Two theorems on the opening between subspaces of a Banach space, Uspekhi Mat. Nauk 14 (1959), no. 5, 135-140 (in Russian).
- [6] R. E. Harte, Spectral projections, Irish Math. Soc. Newsletter 11 (1984), 10-15. Zbl0556.47001
- [7] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1980.
- [8] C. F. King, A note on Drazin inverses, Pacific J. Math. 70 (1977), 383-390. Zbl0382.47001
- [9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381. Zbl0897.47002
- [10] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424. Zbl0864.46028
- [11] A. S. Markus, On some properties of linear operators connected with the notion of the gap, Uchen. Zap. Kishinev. Gos. Univ. 39 (1959), 265-272 (in Russian).
- [12] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. I, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, Cambridge, 1994. Zbl0809.46052
- [13] V. Rakočević, Continuity of the Drazin inverse, J. Operator Theory, to appear. Zbl0990.47002
- [14] V. Rakočević, On the continuity of the Moore-Penrose inverse in Banach algebras, Facta Univ. (Niš) Ser. Math. Inform. 6 (1991), 133-138. Zbl0774.46026
- [15] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand Reinhold, New York, 1960. Zbl0095.09702