Continuity of generalized inverses in Banach algebras
Steffen Roch; Bernd Silbermann
Studia Mathematica (1999)
- Volume: 136, Issue: 3, page 197-227
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topRoch, Steffen, and Silbermann, Bernd. "Continuity of generalized inverses in Banach algebras." Studia Mathematica 136.3 (1999): 197-227. <http://eudml.org/doc/216668>.
@article{Roch1999,
abstract = {The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.},
author = {Roch, Steffen, Silbermann, Bernd},
journal = {Studia Mathematica},
keywords = {generalized inverses; Drazin inverses; Moore-Penrose inverses; group inverses; symmetric inverses; asymptotic generalized invertibility; problem of continuity of a generalized inverse; regularization; asymptotic splitting of approximation numbers},
language = {eng},
number = {3},
pages = {197-227},
title = {Continuity of generalized inverses in Banach algebras},
url = {http://eudml.org/doc/216668},
volume = {136},
year = {1999},
}
TY - JOUR
AU - Roch, Steffen
AU - Silbermann, Bernd
TI - Continuity of generalized inverses in Banach algebras
JO - Studia Mathematica
PY - 1999
VL - 136
IS - 3
SP - 197
EP - 227
AB - The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.
LA - eng
KW - generalized inverses; Drazin inverses; Moore-Penrose inverses; group inverses; symmetric inverses; asymptotic generalized invertibility; problem of continuity of a generalized inverse; regularization; asymptotic splitting of approximation numbers
UR - http://eudml.org/doc/216668
ER -
References
top- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
- [2] A. Böttcher, On the approximation numbers of large Toeplitz matrices, Doc. Math. 2 (1997), 1-29. Zbl0873.47014
- [3] N. Bourbaki, Éléments de Mathématique, Fascicule XXXII, Théories spectrales, Hermann, Paris, 1967.
- [4] I. Gohberg and N. Krupnik, Introduction to the Theory of One-Dimensional Singular Integral Operators, Birkhäuser, Basel, 1992. Zbl0743.45004
- [5] R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. Zbl0810.46062
- [6] R. Harte and M. Mbekhta, Generalized inverses in C*-algebras, II, ibid. 106 (1993), 129-138. Zbl0810.46063
- [7] D. R. Huang, Generalized inverses over Banach algebras, Integral Equations Operator Theory 15 (1992), 454-469. Zbl0761.46038
- [8] D. R. Huang, Group inverses and Drazin inverses over Banach algebras, ibid. 17 (1993), 54-67. Zbl0790.15005
- [9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381. Zbl0897.47002
- [10] J. J. Koliha and V. Rakočević, Continuity of the Drazin inverse, II, Studia Math. 131 (1998), 167-177. Zbl0926.47001
- [11] S. G. Michlin und S. Prössdorf, Singuläre Integraloperatoren, Akademie-Verlag, Berlin, 1980 (extended English translation: Singular Integral Operators, Akademie-Verlag and Springer, 1986).
- [12] S. K. Mitra and C. R. Rao, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971. Zbl0236.15004
- [13] R. H. Moore and M. Z. Nashed, Approximation of generalized inverses of linear operators, SIAM J. Appl. Math. 27 (1974), 1-16. Zbl0295.41018
- [14] M. Z. Nashed (ed.), Generalized Inverses and Applications, Academic Press, New York, 1976.
- [15] V. Rakočević, Continuity of the Drazin inverse, J. Operator Theory 41 (1999), 55-68. Zbl0990.47002
- [16] S. Roch and B. Silbermann, C*-algebra techniques in numerical analysis, ibid. 35 (1996), 241-280. Zbl0865.65035
- [17] S. Roch and B. Silbermann, Asymptotic Moore-Penrose invertibility of singular integral operators, Integral Equations Operator Theory 26 (1996), 81-101. Zbl0860.65145
- [18] S. Roch and B. Silbermann, Index calculus for approximation methods, and singular value decomposition, J. Math. Anal. Appl. 225 (1998), 401-426. Zbl0923.65026
- [18] B. Silbermann, Asymptotic Moore-Penrose inversion of Toeplitz operators, Linear Algebra Appl. 256 (1997), 219-234. Zbl0880.15002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.