Local Hardy spaces on Chébli-Trimèche hypergroups

Walter Bloom; Zengfu Xu

Studia Mathematica (1999)

  • Volume: 133, Issue: 3, page 197-230
  • ISSN: 0039-3223

Abstract

top
We investigate the local Hardy spaces h p on Chébli-Trimèche hypergroups, and establish the equivalence of various characterizations of these in terms of maximal functions and atomic decomposition.

How to cite

top

Bloom, Walter, and Xu, Zengfu. "Local Hardy spaces on Chébli-Trimèche hypergroups." Studia Mathematica 133.3 (1999): 197-230. <http://eudml.org/doc/216614>.

@article{Bloom1999,
abstract = {We investigate the local Hardy spaces $h^p$ on Chébli-Trimèche hypergroups, and establish the equivalence of various characterizations of these in terms of maximal functions and atomic decomposition.},
author = {Bloom, Walter, Xu, Zengfu},
journal = {Studia Mathematica},
keywords = {maximal functions; Hardy spaces; hypergroup; Chébli-Trimèche hypergroups; local Hardy spaces},
language = {eng},
number = {3},
pages = {197-230},
title = {Local Hardy spaces on Chébli-Trimèche hypergroups},
url = {http://eudml.org/doc/216614},
volume = {133},
year = {1999},
}

TY - JOUR
AU - Bloom, Walter
AU - Xu, Zengfu
TI - Local Hardy spaces on Chébli-Trimèche hypergroups
JO - Studia Mathematica
PY - 1999
VL - 133
IS - 3
SP - 197
EP - 230
AB - We investigate the local Hardy spaces $h^p$ on Chébli-Trimèche hypergroups, and establish the equivalence of various characterizations of these in terms of maximal functions and atomic decomposition.
LA - eng
KW - maximal functions; Hardy spaces; hypergroup; Chébli-Trimèche hypergroups; local Hardy spaces
UR - http://eudml.org/doc/216614
ER -

References

top
  1. [A] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297. 
  2. [AT] A. Achour and K. Trimèche, La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0,∞), Ann. Inst. Fourier (Grenoble) 33 (1983), 203-226. Zbl0489.34022
  3. [BH] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20, Walter de Gruyter, Berlin, 1995. 
  4. [BX1] W. R. Bloom and Z. Xu, The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups, in: Applications of Hypergroups and Related Measure Algebras (Joint Summer Research Conference (AMS-IMS-SIAM), Seattle, 1993), Contemp. Math. 183, Amer. Math. Soc., Providence, R.I., 1995, 45-70. 
  5. [BX2] W. R. Bloom and Z. Xu, Maximal functions on Chébli-Trimèche hypergroups, preprint. Zbl0965.43005
  6. [BX3] W. R. Bloom and Z. Xu, Hardy spaces on Chébli-Trimèche hypergroups, Methods Funct. Anal. Topology 3 (1997). Zbl0933.43002
  7. [Cha] D. C. Chang, Estimates for singular integral operators with mixed type homogeneities in Hardy classes, Math. Ann. 287 (1990), 303-322. Zbl0675.42014
  8. [Ché] H. Chébli, Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur ]0,∞[, J. Funct. Anal. 17 (1974), 447-461. Zbl0288.47040
  9. [Coi] R. R. Coifman, A real variable characterization of H p , Studia Math. 51 (1974), 269-274. Zbl0289.46037
  10. [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 549-645. 
  11. [FeS] C. Fefferman and E. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  12. [FoS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, N.J., 1982. Zbl0508.42025
  13. [G] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42. Zbl0409.46060
  14. [GV] R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergeb. Math. Grenzgeb. 101, Springer, Berlin, 1988. Zbl0675.43004
  15. [JSW] A. Jonsson, P. Sjögren and H. Wallin, Hardy and Lipschitz spaces on subsets of n , Studia Math. 80 (1984), 141-166. Zbl0513.42020
  16. [K1] T. Kawazoe, Maximal functions on non-compact, rank one symmetric spaces, in: Adv. Stud. Pure Math. 4, Kinokuniya, Tokyo, 1984, 121-138. 
  17. [K2] T. Kawazoe, Atomic Hardy spaces on semisimple Lie groups, Japan. J. Math. 11 (1985), 293-343. Zbl0626.43009
  18. [Lan] R. E. Langer, On the asymptotic solutions of ordinary differential equations, with reference to the Stokes' phenomenon about a singular point, Trans. Amer. Math. Soc. 37 (1935), 397-416. Zbl0011.30101
  19. [Lat] R. H. Latter, A characterization of H p ( n ) in terms of atoms, Studia Math. 62 (1978), 93-101. Zbl0398.42017
  20. [MS] R. A. Macias and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309. Zbl0431.46019
  21. [PS] L. Päivärinta and E. Somersalo, A generalization of the Calderón-Vaillancourt theorem to L p and h p , Math. Nachr. 138 (1988), 145-156. Zbl0672.35076
  22. [T] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,∞), J. Math. Pures Appl. (9) 60 (1981), 51-98. Zbl0416.44002
  23. [Z] H. Zeuner, One-dimensional hypergroups, Adv. Math. 76 (1989), 1-18. Zbl0677.43003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.