Banach spaces in which all multilinear forms are weakly sequentially continuous

Jesús Castillo; Ricardo García; Raquel Gonzalo

Studia Mathematica (1999)

  • Volume: 136, Issue: 2, page 121-145
  • ISSN: 0039-3223

Abstract

top
We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an answer to a question of Dimant and Zalduendo [20]. (iii) The sum of two polynomially null sequences need not be polynomially null; this answers a question of Biström, Jaramillo and Lindström [8] and also of González and Gutiérrez [23]. (iv), (v) The absolutely convex closed hull of a pw-compact set need not be pw-compact; the projective tensor product of two polynomially null sequences need not be a polynomially null sequence. This answers two questions of González and Gutiérrez [23]. (vi) There exists a Banach space without property (P); this answers a question of Aron, Choi and Llavona [5].

How to cite

top

Castillo, Jesús, García, Ricardo, and Gonzalo, Raquel. "Banach spaces in which all multilinear forms are weakly sequentially continuous." Studia Mathematica 136.2 (1999): 121-145. <http://eudml.org/doc/216664>.

@article{Castillo1999,
abstract = {We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an answer to a question of Dimant and Zalduendo [20]. (iii) The sum of two polynomially null sequences need not be polynomially null; this answers a question of Biström, Jaramillo and Lindström [8] and also of González and Gutiérrez [23]. (iv), (v) The absolutely convex closed hull of a pw-compact set need not be pw-compact; the projective tensor product of two polynomially null sequences need not be a polynomially null sequence. This answers two questions of González and Gutiérrez [23]. (vi) There exists a Banach space without property (P); this answers a question of Aron, Choi and Llavona [5].},
author = {Castillo, Jesús, García, Ricardo, Gonzalo, Raquel},
journal = {Studia Mathematica},
keywords = {multilinear forms; polynomials; weak continuity; bilinear form; Dunford-Pettis property},
language = {eng},
number = {2},
pages = {121-145},
title = {Banach spaces in which all multilinear forms are weakly sequentially continuous},
url = {http://eudml.org/doc/216664},
volume = {136},
year = {1999},
}

TY - JOUR
AU - Castillo, Jesús
AU - García, Ricardo
AU - Gonzalo, Raquel
TI - Banach spaces in which all multilinear forms are weakly sequentially continuous
JO - Studia Mathematica
PY - 1999
VL - 136
IS - 2
SP - 121
EP - 145
AB - We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an answer to a question of Dimant and Zalduendo [20]. (iii) The sum of two polynomially null sequences need not be polynomially null; this answers a question of Biström, Jaramillo and Lindström [8] and also of González and Gutiérrez [23]. (iv), (v) The absolutely convex closed hull of a pw-compact set need not be pw-compact; the projective tensor product of two polynomially null sequences need not be a polynomially null sequence. This answers two questions of González and Gutiérrez [23]. (vi) There exists a Banach space without property (P); this answers a question of Aron, Choi and Llavona [5].
LA - eng
KW - multilinear forms; polynomials; weak continuity; bilinear form; Dunford-Pettis property
UR - http://eudml.org/doc/216664
ER -

References

top
  1. [1] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. Zbl0536.46015
  2. [2] R. Alencar, R. Aron and G. Fricke, Tensor products of Tsirelson's space, Illinois J. Math. 31 (1987), 17-23. Zbl0587.46016
  3. [3] R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pełczyński-Pitt theorem, J. Math Anal. Appl. 206 (1997), 532-546. Zbl0887.46004
  4. [4] Z. Altshuler, P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1993), 140-155. Zbl0264.46011
  5. [5] R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486. 
  6. [6] R. M. Aron and S. Dineen, Q-reflexive Banach spaces, Rocky Mountain J. Math. 27 (1997), 1009-1025. Zbl0916.46011
  7. [7] B. Beauzamy et J. T. Lapresté, Modèles étalés des espaces de Banach, Hermann, Paris, 1984. Zbl0553.46012
  8. [8] P. Biström, J. A. Jaramillo and M. Lindström, Polynomial compactness in Banach spaces, Rocky Mountain J. Math., to appear. Zbl0946.46040
  9. [9] T. Carne, B. Cole and T. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. Zbl0704.46033
  10. [10] P. G. Casazza and B. L. Lin, On symmetric basis sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974), 191-218. Zbl0286.46019
  11. [11] J. M. F. Castillo, On Banach spaces X such that L ( L p , X ) = K ( L p , X ) , Extracta Math. 10 (1995), 27-36. Zbl0882.46008
  12. [12] J. M. F. Castillo, R. García and R. Gonzalo, Stability properties of the class of Banach spaces in which all multilinear forms are weakly sequentially continuous, preprint, 1999. Zbl1004.46011
  13. [13] J. M. F. Castillo and M. González, The Dunford-Pettis property is not a three-space property, Israel J. Math. 81 (1993), 297-299. Zbl0785.46020
  14. [14] J. M. F. Castillo and M. González, New results on the Dunford-Pettis property, Bull. London Math. Soc. 27 (1995), 599-605. Zbl0872.46009
  15. [15] J. M. F. Castillo, M. González and F. Sánchez, M-ideals of Schreier type and the Dunford-Pettis property, in: Non-Associative Algebra and its Applications, S. González (ed.), Kluwer, 1994, 81-85. Zbl0820.46009
  16. [16] J. M. F. Castillo and F. Sánchez, Remarks on some basic properties of Tsirelson's space, Note Mat. 13 (1993), 117-122. Zbl0820.46014
  17. [17] J. M. F. Castillo and F. Sánchez, Weakly p-compact, p-Banach-Saks, and super-reflexive Banach spaces, J. Math. Anal. Appl. 185 (1994), 256-261. Zbl0878.46009
  18. [18] Y. S. Choi and S. G. Kim, Polynomial properties of Banach spaces, J. Math. Anal. Appl. 190 (1995), 203-210. Zbl0829.46035
  19. [19] J. C. Díaz, Non-containment of 1 in projective tensor products of Banach spaces, Rev. Mat. Univ. Complut. Madrid 3 (1990), 121-124. Zbl0727.46009
  20. [20] V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach spaces, J. Math. Anal. Appl. 200 (1996), 548-566. 
  21. [21] G. Emmanuele, A dual characterization of spaces not containing 1 , Bull. Polish Acad. Sci. 34 (1986), 155-160. 
  22. [22] J. D. Farmer, Polynomial reflexivity in Banach spaces, Israel J. Math. 87 (1994), 257-273. Zbl0819.46006
  23. [23] M. González and J. M. Gutiérrez, Gantmacher type theorems for holomorphic mappings, Math. Nachr. 186 (1997), 131-145. Zbl0898.46035
  24. [24] M. González and J. M. Gutiérrez, Polynomials on Schreier's space, preprint, 1997. Zbl0985.46003
  25. [25] R. Gonzalo, Multilinear forms, subsymmetric polynomials and spreading models, J. Math. Anal. Appl. 202 (1996), 379-397. Zbl0872.46012
  26. [26] R. Gonzalo and J. A. Jaramillo, Smoothness and estimates of sequences in Banach spaces, Israel J. Math. 89 (1995), 321-341. Zbl0823.46013
  27. [27] R. Gonzalo and J. A. Jaramillo, Compact polynomials between Banach spaces, Proc. Roy. Irish Acad. Sect. A 95 (1995), 213-226. Zbl0853.46039
  28. [28] J. M. Gutiérrez, J. A. Jaramillo and J. G. Llavona, Polynomials and geometry of Banach spaces, Extracta Math. 10 (1995), 79-114. 
  29. [29] J. A. Jaramillo and A. Prieto, Weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463-468. Zbl0795.46042
  30. [30] M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 137 (1998), 99-112. Zbl0909.46015
  31. [31] H. Knaust and E. Odell, Weakly null sequences with upper p -estimates, in: Lecture Notes in Math. 1470, Springer, 1990, 85-107. Zbl0759.46013
  32. [32] D. Leung, On c 0 -saturated Banach spaces, Illinois J. Math. 39 (1995), 15-29. Zbl0808.46025
  33. [33] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977. Zbl0362.46013
  34. [34] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1996. 
  35. [35] A. Pełczyński, A property of multilinear operations, Studia Math. 16 (1957), 173-182. Zbl0080.09701
  36. [36] R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. 27 (1979), 373-379. Zbl0418.46006
  37. [37] C. Stegall, Duals of certain spaces with the Dunford-Pettis property, Notices Amer. Math. Soc. 19 (1972), A-799. 
  38. [38] E. Straeuli, On Hahn-Banach extensions for certain operator ideals, Arch. Math. (Basel) 47 (1986), 49-54. Zbl0573.47042
  39. [39] M. Valdivia, Complemented subspaces and interpolation properties in spaces of polynomials, J. Math. Anal. Appl. 208 (1997), 1-30. Zbl0890.46034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.