Single valued extension property and generalized Weyl’s theorem
M. Berkani; N. Castro; S. V. Djordjević
Mathematica Bohemica (2006)
- Volume: 131, Issue: 1, page 29-38
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBerkani, M., Castro, N., and Djordjević, S. V.. "Single valued extension property and generalized Weyl’s theorem." Mathematica Bohemica 131.1 (2006): 29-38. <http://eudml.org/doc/249899>.
@article{Berkani2006,
abstract = {Let $T$ be an operator acting on a Banach space $X$, let $\sigma (T)$ and $ \sigma _\{BW\}(T) $ be respectively the spectrum and the B-Weyl spectrum of $T$. We say that $T$ satisfies the generalized Weyl’s theorem if $ \sigma _\{BW\}(T)= \sigma (T) \setminus E(T)$, where $E(T)$ is the set of all isolated eigenvalues of $T$. The first goal of this paper is to show that if $T$ is an operator of topological uniform descent and $0$ is an accumulation point of the point spectrum of $T,$ then $T$ does not have the single valued extension property at $0$, extending an earlier result of J. K. Finch and a recent result of Aiena and Monsalve. Our second goal is to give necessary and sufficient conditions under which an operator having the single valued extension property satisfies the generalized Weyl’s theorem.},
author = {Berkani, M., Castro, N., Djordjević, S. V.},
journal = {Mathematica Bohemica},
keywords = {single valued extension property; B-Weyl spectrum; generalized Weyl’s theorem; B-Weyl spectrum; SVEP; generalised Weyl theorem},
language = {eng},
number = {1},
pages = {29-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Single valued extension property and generalized Weyl’s theorem},
url = {http://eudml.org/doc/249899},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Berkani, M.
AU - Castro, N.
AU - Djordjević, S. V.
TI - Single valued extension property and generalized Weyl’s theorem
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 1
SP - 29
EP - 38
AB - Let $T$ be an operator acting on a Banach space $X$, let $\sigma (T)$ and $ \sigma _{BW}(T) $ be respectively the spectrum and the B-Weyl spectrum of $T$. We say that $T$ satisfies the generalized Weyl’s theorem if $ \sigma _{BW}(T)= \sigma (T) \setminus E(T)$, where $E(T)$ is the set of all isolated eigenvalues of $T$. The first goal of this paper is to show that if $T$ is an operator of topological uniform descent and $0$ is an accumulation point of the point spectrum of $T,$ then $T$ does not have the single valued extension property at $0$, extending an earlier result of J. K. Finch and a recent result of Aiena and Monsalve. Our second goal is to give necessary and sufficient conditions under which an operator having the single valued extension property satisfies the generalized Weyl’s theorem.
LA - eng
KW - single valued extension property; B-Weyl spectrum; generalized Weyl’s theorem; B-Weyl spectrum; SVEP; generalised Weyl theorem
UR - http://eudml.org/doc/249899
ER -
References
top- 10.1006/jmaa.2000.6966, J. Math. Anal. Appl. 250 (2000), 435–448. (2000) MR1786074DOI10.1006/jmaa.2000.6966
- 10.1007/BF01236475, Int. Equ. Oper. Theory 34 (1999), 244–249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
- 10.4064/sm-140-2-163-175, Studia Math. 140 (2000), 163–175. (2000) Zbl0978.47011MR1784630DOI10.4064/sm-140-2-163-175
- 10.1090/S0002-9939-01-06291-8, Proc. Amer. Math. Soc. 130 (2002), 1717–1723. (2002) MR1887019DOI10.1090/S0002-9939-01-06291-8
- 10.4064/sm148-3-4, Studia Math. 148 (2001), 251–257. (2001) MR1880725DOI10.4064/sm148-3-4
- Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376. (2003) MR1991673
- 10.1016/S0022-247X(02)00179-8, J. Math. Anal. Appl. 272 (2002), 596–603. (2002) Zbl1043.47004MR1930862DOI10.1016/S0022-247X(02)00179-8
- 10.2140/pjm.1975.58.61, Pac. J. Math. 58 (1975), 61–69. (1975) Zbl0315.47002MR0374985DOI10.2140/pjm.1975.58.61
- 10.2969/jmsj/03420317, J. Math. Soc. Japan 34 (1982), 317–337. (1982) Zbl0477.47013MR0651274DOI10.2969/jmsj/03420317
- Weyl’s theorem for operators with a growth condition and Dunford’s property , Indian J. Pure Appl. Math. 33 (2002), 403–407. (2002) MR1894635
- On the axiomatic theory of the spectrum, Stud. Math. 119 (1996), 109–128. (1996) MR1391471
- 10.1007/BF01351564, Math. Ann. 184 (1970), 197–214. (1970) Zbl0177.17102MR0259644DOI10.1007/BF01351564
- 10.4064/sm-119-2-129-147, Stud. Math. 119 (1996), 129–147. (1996) MR1391472DOI10.4064/sm-119-2-129-147
- Continuity of generalized inverses in Banach algebras, Stud. Math. 136 (1999), 197–227. (1999) MR1724245
- 10.1090/S0002-9939-1993-1111438-8, Proc. Am. Math. Soc. 117 (1993), 715–719. (1993) Zbl0780.47019MR1111438DOI10.1090/S0002-9939-1993-1111438-8
- 10.1007/BF03019655, Rend. Circ. Mat. Palermo 27 (1909), 373–392. (1909) DOI10.1007/BF03019655
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.