Fourier analysis, Schur multipliers on and non-commutative Λ(p)-sets
Studia Mathematica (1999)
- Volume: 137, Issue: 3, page 203-260
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHarcharras, Asma. "Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets." Studia Mathematica 137.3 (1999): 203-260. <http://eudml.org/doc/216685>.
@article{Harcharras1999,
abstract = {This work deals with various questions concerning Fourier multipliers on $L^p$, Schur multipliers on the Schatten class $S^p$ as well as their completely bounded versions when $L^p$ and $S^p$ are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.},
author = {Harcharras, Asma},
journal = {Studia Mathematica},
keywords = {Fourier multipliers; Schur multipliers; Schatten class},
language = {eng},
number = {3},
pages = {203-260},
title = {Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets},
url = {http://eudml.org/doc/216685},
volume = {137},
year = {1999},
}
TY - JOUR
AU - Harcharras, Asma
TI - Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 3
SP - 203
EP - 260
AB - This work deals with various questions concerning Fourier multipliers on $L^p$, Schur multipliers on the Schatten class $S^p$ as well as their completely bounded versions when $L^p$ and $S^p$ are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.
LA - eng
KW - Fourier multipliers; Schur multipliers; Schatten class
UR - http://eudml.org/doc/216685
ER -
References
top- [1] M. Anoussis and E. Katsoulis, Complemented subspaces of spaces and CSL algebras, J. London Math. Soc. 45 (1992), 301-313. Zbl0781.47037
- [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976. Zbl0344.46071
- [3] G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1976), 27-40. Zbl0338.47013
- [4] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. Zbl0786.46056
- [5] A. Bonami, Ensembles Λ(p) dans le dual de , Ann. Inst. Fourier (Grenoble) 18 (1968), no. 2, 193-204.
- [6] A. Bonami, Étude des coefficients de Fourier des fonctions de , ibid. 20 (1970), no. 2, 335-402. Zbl0195.42501
- [7] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168. Zbl0533.46008
- [8] J. Bourgain, Vector valued singular integrals and the -BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. Woyczynski (eds.), Marcel Dekker, New York, 1986, 1-19.
- [9] J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245. Zbl0674.43004
- [10] M. Bożejko, The existence of Λ(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 579-582. Zbl0279.43010
- [11] M. Bożejko, A remark to my paper (The existence of Λ(p) sets in discrete noncommutative groups), ibid. 11 (1975), 198-199. Zbl0304.43009
- [12] M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. (2) 51 (1975), 407-412.
- [13] M. Bożejko, Remarks on the Herz-Schur multipliers on free groups, Math. Ann. 258 (1981), 11-15. Zbl0483.43004
- [14] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302. Zbl0564.43004
- [15] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995. Zbl0855.47016
- [16] J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39. Zbl0050.11501
- [17] E. Effros and Z. Ruan, A new apprach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337. Zbl0769.46037
- [18] J. Erdos, Completely distributive CSL algebras with no complements in , Proc. Amer. Math. Soc. 124 (1996), 1127-1131. Zbl0856.47027
- [19] U. Haagerup and G. Pisier, Bounded linear operators between -algebras, Duke Math. J. 71 (1993), 889-925. Zbl0803.46064
- [20] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative -spaces, J. Funct. Anal. 56 (1984), 29-78. Zbl0604.46063
- [21] S. Kwapień, On operators factorizable through space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225. Zbl0246.47040
- [22] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. Zbl0189.43505
- [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Sequence Spaces, Springer, Berlin, 1976. Zbl0347.46025
- [24] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
- [25] F. Lust-Piquard, Opérateurs de Hankel 1-sommant de l(N) dans l(N) et multiplicateurs de , C. R. Acad. Sci. Paris Sér. I 299 (1984), 915-918. Zbl0562.42007
- [26] F. Lust-Piquard, Inégalités de Khintchine dans (1 < p < ∞), ibid. 303 (1986), 289-292.
- [27] F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260. Zbl0755.47029
- [28] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. Zbl0292.46030
- [29] V. Peller, Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113 (1980), 538-551 (in Russian); English transl.: Math. USSR-Sb. 41 (1982), 443-479. Zbl0458.47022
- [30] V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class , Integral Equations Operator Theory 5 (1982), 244-272. Zbl0478.47014
- [31] G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19. Zbl0381.46010
- [32] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, 1995.
- [33] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585 (1996). Zbl0932.46046
- [34] G. Pisier, Non-commutative vector valued -spaces and completely p-summing maps, Astérisque 247 (1998).
- [35] G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698. Zbl0898.46056
- [36] Z. Ruan, Subspaces of -algebras, J. Funct. Anal. 76 (1988), 217-230.
- [37] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. Zbl0091.05802
- [38] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-457. Zbl0051.34201
- [39] J. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349. Zbl0225.46034
- [40] J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248. Zbl0187.37702
- [41] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971. Zbl0232.42007
- [42] M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-306. Zbl0917.46006
- [43] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes , Studia Math. 50 (1974), 163-182. Zbl0282.46016
- [44] N. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335. Zbl0183.14502
- [45] M. Zafran, Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405-1416. Zbl0544.42010
- [46] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189-201. Zbl0278.42005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.