Fourier analysis, Schur multipliers on S p and non-commutative Λ(p)-sets

Asma Harcharras

Studia Mathematica (1999)

  • Volume: 137, Issue: 3, page 203-260
  • ISSN: 0039-3223

Abstract

top
This work deals with various questions concerning Fourier multipliers on L p , Schur multipliers on the Schatten class S p as well as their completely bounded versions when L p and S p are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.

How to cite

top

Harcharras, Asma. "Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets." Studia Mathematica 137.3 (1999): 203-260. <http://eudml.org/doc/216685>.

@article{Harcharras1999,
abstract = {This work deals with various questions concerning Fourier multipliers on $L^p$, Schur multipliers on the Schatten class $S^p$ as well as their completely bounded versions when $L^p$ and $S^p$ are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.},
author = {Harcharras, Asma},
journal = {Studia Mathematica},
keywords = {Fourier multipliers; Schur multipliers; Schatten class},
language = {eng},
number = {3},
pages = {203-260},
title = {Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets},
url = {http://eudml.org/doc/216685},
volume = {137},
year = {1999},
}

TY - JOUR
AU - Harcharras, Asma
TI - Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 3
SP - 203
EP - 260
AB - This work deals with various questions concerning Fourier multipliers on $L^p$, Schur multipliers on the Schatten class $S^p$ as well as their completely bounded versions when $L^p$ and $S^p$ are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.
LA - eng
KW - Fourier multipliers; Schur multipliers; Schatten class
UR - http://eudml.org/doc/216685
ER -

References

top
  1. [1] M. Anoussis and E. Katsoulis, Complemented subspaces of C p spaces and CSL algebras, J. London Math. Soc. 45 (1992), 301-313. Zbl0781.47037
  2. [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976. Zbl0344.46071
  3. [3] G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1976), 27-40. Zbl0338.47013
  4. [4] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. Zbl0786.46056
  5. [5] A. Bonami, Ensembles Λ(p) dans le dual de D , Ann. Inst. Fourier (Grenoble) 18 (1968), no. 2, 193-204. 
  6. [6] A. Bonami, Étude des coefficients de Fourier des fonctions de L p ( G ) , ibid. 20 (1970), no. 2, 335-402. Zbl0195.42501
  7. [7] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168. Zbl0533.46008
  8. [8] J. Bourgain, Vector valued singular integrals and the H 1 -BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. Woyczynski (eds.), Marcel Dekker, New York, 1986, 1-19. 
  9. [9] J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245. Zbl0674.43004
  10. [10] M. Bożejko, The existence of Λ(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 579-582. Zbl0279.43010
  11. [11] M. Bożejko, A remark to my paper (The existence of Λ(p) sets in discrete noncommutative groups), ibid. 11 (1975), 198-199. Zbl0304.43009
  12. [12] M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. (2) 51 (1975), 407-412. 
  13. [13] M. Bożejko, Remarks on the Herz-Schur multipliers on free groups, Math. Ann. 258 (1981), 11-15. Zbl0483.43004
  14. [14] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302. Zbl0564.43004
  15. [15] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995. Zbl0855.47016
  16. [16] J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39. Zbl0050.11501
  17. [17] E. Effros and Z. Ruan, A new apprach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337. Zbl0769.46037
  18. [18] J. Erdos, Completely distributive CSL algebras with no complements in S p , Proc. Amer. Math. Soc. 124 (1996), 1127-1131. Zbl0856.47027
  19. [19] U. Haagerup and G. Pisier, Bounded linear operators between C * -algebras, Duke Math. J. 71 (1993), 889-925. Zbl0803.46064
  20. [20] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L p -spaces, J. Funct. Anal. 56 (1984), 29-78. Zbl0604.46063
  21. [21] S. Kwapień, On operators factorizable through L p space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225. Zbl0246.47040
  22. [22] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. Zbl0189.43505
  23. [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Sequence Spaces, Springer, Berlin, 1976. Zbl0347.46025
  24. [24] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975. 
  25. [25] F. Lust-Piquard, Opérateurs de Hankel 1-sommant de l(N) dans l(N) et multiplicateurs de H 1 ( T ) , C. R. Acad. Sci. Paris Sér. I 299 (1984), 915-918. Zbl0562.42007
  26. [26] F. Lust-Piquard, Inégalités de Khintchine dans C p (1 < p < ∞), ibid. 303 (1986), 289-292. 
  27. [27] F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260. Zbl0755.47029
  28. [28] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. Zbl0292.46030
  29. [29] V. Peller, Hankel operators of class ɞ p and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113 (1980), 538-551 (in Russian); English transl.: Math. USSR-Sb. 41 (1982), 443-479. Zbl0458.47022
  30. [30] V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class ɞ p , Integral Equations Operator Theory 5 (1982), 244-272. Zbl0478.47014
  31. [31] G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19. Zbl0381.46010
  32. [32] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, 1995. 
  33. [33] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585 (1996). Zbl0932.46046
  34. [34] G. Pisier, Non-commutative vector valued L p -spaces and completely p-summing maps, Astérisque 247 (1998). 
  35. [35] G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698. Zbl0898.46056
  36. [36] Z. Ruan, Subspaces of C * -algebras, J. Funct. Anal. 76 (1988), 217-230. 
  37. [37] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. Zbl0091.05802
  38. [38] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-457. Zbl0051.34201
  39. [39] J. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349. Zbl0225.46034
  40. [40] J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248. Zbl0187.37702
  41. [41] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971. Zbl0232.42007
  42. [42] M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-306. Zbl0917.46006
  43. [43] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes S p ( 1 p < ) , Studia Math. 50 (1974), 163-182. Zbl0282.46016
  44. [44] N. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335. Zbl0183.14502
  45. [45] M. Zafran, Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405-1416. Zbl0544.42010
  46. [46] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189-201. Zbl0278.42005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.