Applying the density theorem for derivations to range inclusion problems

K. Beidar; Matej Brešar

Studia Mathematica (2000)

  • Volume: 138, Issue: 1, page 93-100
  • ISSN: 0039-3223

Abstract

top
The problem of when derivations (and their powers) have the range in the Jacobson radical is considered. The proofs are based on the density theorem for derivations.

How to cite

top

Beidar, K., and Brešar, Matej. "Applying the density theorem for derivations to range inclusion problems." Studia Mathematica 138.1 (2000): 93-100. <http://eudml.org/doc/216692>.

@article{Beidar2000,
abstract = {The problem of when derivations (and their powers) have the range in the Jacobson radical is considered. The proofs are based on the density theorem for derivations.},
author = {Beidar, K., Brešar, Matej},
journal = {Studia Mathematica},
keywords = {derivations; Jacobson radical; Banach algebras},
language = {eng},
number = {1},
pages = {93-100},
title = {Applying the density theorem for derivations to range inclusion problems},
url = {http://eudml.org/doc/216692},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Beidar, K.
AU - Brešar, Matej
TI - Applying the density theorem for derivations to range inclusion problems
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 1
SP - 93
EP - 100
AB - The problem of when derivations (and their powers) have the range in the Jacobson radical is considered. The proofs are based on the density theorem for derivations.
LA - eng
KW - derivations; Jacobson radical; Banach algebras
UR - http://eudml.org/doc/216692
ER -

References

top
  1. [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991. 
  2. [2] K. I. Beidar and M. Brešar, Extended Jacobson density theorem for rings with derivations and automorphisms, submitted. Zbl1003.47029
  3. [3] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, 1996. 
  4. [4] M. Brešar, Derivations on noncommutative Banach algebras II, Arch. Math. (Basel) 61 (1994), 56-59. 
  5. [5] M. Brešar, Derivations mapping into the socle, II, Proc. Amer. Math. Soc. 126 (1998), 181-188. 
  6. [6] M. Brešar and P. Šemrl, On locally linearly dependent operators and derivations, Trans. Amer. Math. Soc. 351 (1999), 1257-1275. Zbl0920.15009
  7. [7] L. O. Chung and J. Luh, Nilpotency of derivations, Canad. Math. Bull. 26 (1983), 341-346. Zbl0476.16028
  8. [8] B. Felzenszwalb and C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra 83 (1983), 520-530. Zbl0519.16022
  9. [9] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), 369-370. Zbl0412.16018
  10. [10] I. N. Herstein, Sui commutatori degli anelli semplici, Rend. Sem. Mat. Fis. Milano 33 (1963), 80-86. 
  11. [11] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168. Zbl0423.16011
  12. [12] C. Lanski, Derivations nilpotent on subsets of prime rings, Comm. Algebra 20 (1992), 1427-1446. Zbl0759.16014
  13. [13] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 731-734. Zbl0821.16037
  14. [14] C. Le Page, Sur quelques conditions entraȋnant la commutativité dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 265 (1967), 235-237. Zbl0158.14102
  15. [15] W. S. Martindale III and C. R. Miers, On the iterates of derivations of prime rings, Pacific J. Math. 104 (1983), 179-190. Zbl0507.16022
  16. [16] M. Mathieu, Where to find the image of a derivation, in: Banach Center Publ. 30, Inst. Math. Polish Acad. Sci., Warszawa, 1994, 237-249. Zbl0813.47043
  17. [17] M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), 469-474. Zbl0714.46038
  18. [18] M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London Math. Soc. 24 (1992), 485-487. Zbl0733.46023
  19. [19] G. J. Murphy, Aspects of the theory of derivations, in: Banach Center Publ. 30 1994, 267-275. Zbl0811.46045
  20. [20] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211. Zbl0407.46043
  21. [21] V. Runde, Range inclusion results for derivations on noncommutative Banach algebras, Studia Math. 105 (1993), 159-172. Zbl0810.46044
  22. [22] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170. 
  23. [23] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. Zbl0067.35101
  24. [24] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460. Zbl0681.47016
  25. [25] Yu. V. Turovskiĭ and V. S. Shul'man, Conditions for the massiveness of the range of a derivation of a Banach algebra and of associated differential operators, Mat. Zametki 42 (1987), 305-314 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.