2-normed Algebras-II
Page 1 Next
Neeraj Srivastava, S. Bhattacharya, S. N. Lal (2011)
Publications de l'Institut Mathématique
Huzihiro Araki (1980)
Recherche Coopérative sur Programme n°25
Wilhelm Kaup, Harald Upmeier, Robert Braun (1978)
Mathematische Zeitschrift
Edward Beckenstein, Lawrence Narici, Charles Suffel (1974)
Colloquium Mathematicae
Harald Hanche-Olsen (1980)
Mathematische Zeitschrift
W. Żelazko (1979)
Studia Mathematica
R.M. Brooks (1979)
Mathematische Annalen
M. OUDADESS (1999)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
D. Dacunha-Castelle, J. Krivine (1972)
Studia Mathematica
K. Beidar, Matej Brešar (2000)
Studia Mathematica
The problem of when derivations (and their powers) have the range in the Jacobson radical is considered. The proofs are based on the density theorem for derivations.
Javadian, A., Gordji, M.Eshaghi, Savadkouhi, M.Bavand (2011)
The Journal of Nonlinear Sciences and its Applications
Neumann, Michael (1980)
Abstracta. 8th Winter School on Abstract Analysis
Harald Upmeier (1981)
Mathematische Zeitschrift
Kusraev, A.G. (2006)
Sibirskij Matematicheskij Zhurnal
Steven Bellenot (1984)
Studia Mathematica
Werner Blum (1974)
Manuscripta mathematica
Bruce Barnes (1992)
Studia Mathematica
Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. If S is a closed operator in X such that (λ - S)^{-1} ∈ ℬ for some number λ, then S is affiliated with ℬ. The object of this paper is to study the spectral theory and Fredholm theory relative to ℬ of an operator which is affiliated with ℬ. Also, applications are given to semigroups of operators which are contained in ℬ.
Paolo Boero (1973)
Rendiconti del Seminario Matematico della Università di Padova
Hemdaoui, M., Amzil, M. (2008)
Journal of Inequalities and Applications [electronic only]
Kadets, Vladimir, Katkova, Olga, Martín, Miguel, Vishnyakova, Anna (2008)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.We estimate the (midpoint) modulus of convexity at the unit 1 of a Banach algebra A showing that inf {max±||1 ± x|| − 1 : x ∈ A, ||x||=ε} ≥ (π/4e)ε²+o(ε²) as ε → 0. We also give a characterization of two-dimensional subspaces of Banach algebras containing the identity in terms of polynomial inequalities.
Page 1 Next