Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials

Kazuhiro Kurata; Satoko Sugano

Studia Mathematica (2000)

  • Volume: 138, Issue: 2, page 101-119
  • ISSN: 0039-3223

Abstract

top
We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.

How to cite

top

Kurata, Kazuhiro, and Sugano, Satoko. "Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials." Studia Mathematica 138.2 (2000): 101-119. <http://eudml.org/doc/216693>.

@article{Kurata2000,
abstract = {We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.},
author = {Kurata, Kazuhiro, Sugano, Satoko},
journal = {Studia Mathematica},
keywords = {elliptic equations; fundamental solution; eigenvalue; eigenfunctions},
language = {eng},
number = {2},
pages = {101-119},
title = {Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials},
url = {http://eudml.org/doc/216693},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Kurata, Kazuhiro
AU - Sugano, Satoko
TI - Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 2
SP - 101
EP - 119
AB - We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.
LA - eng
KW - elliptic equations; fundamental solution; eigenvalue; eigenfunctions
UR - http://eudml.org/doc/216693
ER -

References

top
  1. [CSW] S. Chanillo, J. Strömberg and R. Wheeden, Norm inequalities for potential type operators, Rev. Mat. Iberoamericana 3 (1987), 311-335. Zbl0696.31010
  2. [CW] S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa 15 (1988), 309-340. Zbl0688.35002
  3. [CFG] F. Chiarenza, E. Fabes and N. Garofalo, Harnack's inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), 415-425. Zbl0626.35022
  4. [CF] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. 7 (1987), 273-279. Zbl0717.42023
  5. [CoF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. Zbl0291.44007
  6. [Da] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. Zbl0699.35006
  7. [FJK] E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, 151-182. Zbl0488.35034
  8. [FKS] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. Zbl0498.35042
  9. [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. Zbl0526.35080
  10. [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985. 
  11. [Ge] F. Gehring, The L p -integrability of the partial derivatives of a quasi-conformal mapping, Acta Math. 130 (1973), 265-277. Zbl0258.30021
  12. [Gu] C. Gutiérrez, Harnack's inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc. 312 (1989), 403-419. Zbl0685.35020
  13. [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983. 
  14. [Ku1] K. Kurata, Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order, Indiana Univ. Math. J. 43 (1994), 411-440. Zbl0805.35017
  15. [Ku2] K. Kurata, On doubling properties for non-negative weak solutions of elliptic and parabolic PDE, Israel J. Math., to appear. 
  16. [KS] K. Kurata and S. Sugano, A remark on estimates for uniformly elliptic operators on weighted L p spaces and Morrey spacs, Math. Nachr., to appear. Zbl0939.35036
  17. [Mu] M. Murata, On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci. 26 (1990), 585-627. Zbl0726.31009
  18. [Sh1] Z. Shen, L p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. Zbl0818.35021
  19. [Sh2] Z. Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (1996), 4465-4488. Zbl0866.35088
  20. [Sm] H. F. Smith, Parametrix construction for a class of subelliptic differential operators, Duke Math. J. 63 (1991), 343-354. 
  21. [SW] J. O. Strömberg and R. L. Wheeden, Fractional integrals on weighted H p and L p spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. 
  22. [Su] S. Sugano, Estimates for the operators V α ( - Δ + V ) - β and V α ( - Δ + V ) - β with certain nonnegative potentials V, Tokyo J. Math. 21 (1998), 441-452. 
  23. [Ta] K. Tachizawa, Asymptotic distribution of eigenvalues of Schrödinger operators with nonclassical potentials, Tôhoku Math. J. 42 (1990), 381-406. Zbl0726.35091
  24. [Zh] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.