A characterization of commutative Fréchet algebras with all ideals closed

W. Żelazko

Studia Mathematica (2000)

  • Volume: 138, Issue: 3, page 293-300
  • ISSN: 0039-3223

Abstract

top
Let A be a commutative unital Fréchet algebra, i.e. a completely metrizable topological algebra. Our main result states that all ideals in A are closed if and only if A is a noetherian algebra

How to cite

top

Żelazko, W.. "A characterization of commutative Fréchet algebras with all ideals closed." Studia Mathematica 138.3 (2000): 293-300. <http://eudml.org/doc/216707>.

@article{Żelazko2000,
abstract = {Let A be a commutative unital Fréchet algebra, i.e. a completely metrizable topological algebra. Our main result states that all ideals in A are closed if and only if A is a noetherian algebra},
author = {Żelazko, W.},
journal = {Studia Mathematica},
keywords = {commutative Fréchet algebras; ideal; Noetherian algebra},
language = {eng},
number = {3},
pages = {293-300},
title = {A characterization of commutative Fréchet algebras with all ideals closed},
url = {http://eudml.org/doc/216707},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Żelazko, W.
TI - A characterization of commutative Fréchet algebras with all ideals closed
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 293
EP - 300
AB - Let A be a commutative unital Fréchet algebra, i.e. a completely metrizable topological algebra. Our main result states that all ideals in A are closed if and only if A is a noetherian algebra
LA - eng
KW - commutative Fréchet algebras; ideal; Noetherian algebra
UR - http://eudml.org/doc/216707
ER -

References

top
  1. [1] M. Akkar et C. Nacir, Continuité automatique dans les limites inductives localement convexes de Q-algèbres de Fréchet, Ann. Sci. Math. Québec 19 (1995), 115-130. Zbl0840.46031
  2. [2] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932. Zbl0005.20901
  3. [3] G. Carboni and A. Larotonda, An example of a Fréchet algebra which is a principal ideal domain, this issue, 265-275. Zbl0969.46041
  4. [4] A. V. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup. Pisa 5 (1978), 471-488. Zbl0397.46045
  5. [5] H. Grauert and R. Remmert, Analytische Stellenalgebren, Springer, 1971. 
  6. [6] A. Mallios, Topological Algebras. Selected Topics, North-Holland, 1986. 
  7. [7] E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952). Zbl0047.35502
  8. [8] S. Rolewicz, Metric Linear Spaces, PWN, 1972. 
  9. [9] H. H. Schaefer, Topological Vector Spaces, Springer, 1971. 
  10. [10] W. Żelazko, Selected Topics in Topological Algebras, Aarhus Univ. Lecture Notes 31, 1971. Zbl0221.46041
  11. [11] W. Żelazko, On maximal ideals in commutative m-convex algebras, Studia Math. 58 (1976), 291-298. Zbl0344.46103
  12. [12] W. Żelazko, On topologization of countably generated algebras, ibid. 112 (1994), 83-88. Zbl0832.46042
  13. [13] W. Żelazko, On m-convexity of commutative real Waelbroeck algebras, Comm. Math., submitted. Zbl1001.46035
  14. [14] W. Żelazko, Characterizations of Q-algebras of type F and of F-algebras with all ideals closed, Acta Comm. Univ. Tartuensis, to appear. Zbl1044.46041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.