An example of a Fréchet algebra which is a principal ideal domain

Graciela Carboni; Angel Larotonda

Studia Mathematica (2000)

  • Volume: 138, Issue: 3, page 265-275
  • ISSN: 0039-3223

Abstract

top
We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.

How to cite

top

Carboni, Graciela, and Larotonda, Angel. "An example of a Fréchet algebra which is a principal ideal domain." Studia Mathematica 138.3 (2000): 265-275. <http://eudml.org/doc/216704>.

@article{Carboni2000,
abstract = {We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.},
author = {Carboni, Graciela, Larotonda, Angel},
journal = {Studia Mathematica},
keywords = {Fréchet algebra; principal ideal domain; quasi-analytic class; Fréchet -convex algebra; maximal ideal space},
language = {eng},
number = {3},
pages = {265-275},
title = {An example of a Fréchet algebra which is a principal ideal domain},
url = {http://eudml.org/doc/216704},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Carboni, Graciela
AU - Larotonda, Angel
TI - An example of a Fréchet algebra which is a principal ideal domain
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 265
EP - 275
AB - We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.
LA - eng
KW - Fréchet algebra; principal ideal domain; quasi-analytic class; Fréchet -convex algebra; maximal ideal space
UR - http://eudml.org/doc/216704
ER -

References

top
  1. [1] R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182. Zbl0087.31802
  2. [2] R. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 623-630. Zbl0031.25103
  3. [3] H. Arizmendi, On the spectral radius of a matrix algebra, Funct. Approx. Comment. Math. 19 (1990), 167-176. Zbl0731.46027
  4. [4] S. Bouloussa, Caractérisation des algèbres de Fréchet qui sont des anneaux de valuation, J. London Math. Soc. (2) 25 (1982), 355-364. Zbl0576.46042
  5. [5] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. Zbl0391.46037
  6. [6] A. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup. Pisa 3 (1978), 471-488. Zbl0397.46045
  7. [7] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968. 
  8. [8] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383. Zbl0168.10603
  9. [9] W. Roberts and D. Vanberg, Convex Functions, Academic Press, New York, 1973. 
  10. [10] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1964. 
  11. [11] A. Sinclair and A. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211 (1974), 151-153. Zbl0275.46037
  12. [12] G. Tomassini, On some finiteness properties of topological algebras, Symposia Math. 11 (1973), 305-311. 
  13. [13] W. Żelazko, A theorem on B 0 division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375. Zbl0095.31303
  14. [14] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1977. Zbl0367.42001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.