An example of a Fréchet algebra which is a principal ideal domain
Graciela Carboni; Angel Larotonda
Studia Mathematica (2000)
- Volume: 138, Issue: 3, page 265-275
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCarboni, Graciela, and Larotonda, Angel. "An example of a Fréchet algebra which is a principal ideal domain." Studia Mathematica 138.3 (2000): 265-275. <http://eudml.org/doc/216704>.
@article{Carboni2000,
abstract = {We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.},
author = {Carboni, Graciela, Larotonda, Angel},
journal = {Studia Mathematica},
keywords = {Fréchet algebra; principal ideal domain; quasi-analytic class; Fréchet -convex algebra; maximal ideal space},
language = {eng},
number = {3},
pages = {265-275},
title = {An example of a Fréchet algebra which is a principal ideal domain},
url = {http://eudml.org/doc/216704},
volume = {138},
year = {2000},
}
TY - JOUR
AU - Carboni, Graciela
AU - Larotonda, Angel
TI - An example of a Fréchet algebra which is a principal ideal domain
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 265
EP - 275
AB - We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.
LA - eng
KW - Fréchet algebra; principal ideal domain; quasi-analytic class; Fréchet -convex algebra; maximal ideal space
UR - http://eudml.org/doc/216704
ER -
References
top- [1] R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182. Zbl0087.31802
- [2] R. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 623-630. Zbl0031.25103
- [3] H. Arizmendi, On the spectral radius of a matrix algebra, Funct. Approx. Comment. Math. 19 (1990), 167-176. Zbl0731.46027
- [4] S. Bouloussa, Caractérisation des algèbres de Fréchet qui sont des anneaux de valuation, J. London Math. Soc. (2) 25 (1982), 355-364. Zbl0576.46042
- [5] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. Zbl0391.46037
- [6] A. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup. Pisa 3 (1978), 471-488. Zbl0397.46045
- [7] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.
- [8] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383. Zbl0168.10603
- [9] W. Roberts and D. Vanberg, Convex Functions, Academic Press, New York, 1973.
- [10] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1964.
- [11] A. Sinclair and A. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211 (1974), 151-153. Zbl0275.46037
- [12] G. Tomassini, On some finiteness properties of topological algebras, Symposia Math. 11 (1973), 305-311.
- [13] W. Żelazko, A theorem on division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375. Zbl0095.31303
- [14] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1977. Zbl0367.42001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.