Orbit equivalence and Kakutani equivalence with Sturmian subshifts

P. Dartnell; F. Durand; A. Maass

Studia Mathematica (2000)

  • Volume: 142, Issue: 1, page 25-45
  • ISSN: 0039-3223

Abstract

top
Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.

How to cite

top

Dartnell, P., Durand, F., and Maass, A.. "Orbit equivalence and Kakutani equivalence with Sturmian subshifts." Studia Mathematica 142.1 (2000): 25-45. <http://eudml.org/doc/216787>.

@article{Dartnell2000,
abstract = {Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.},
author = {Dartnell, P., Durand, F., Maass, A.},
journal = {Studia Mathematica},
keywords = {Sturmian system; dimension group; Bratteli-Vershik representation; minimal system; orbit equivalence; Kakutani equivalence; topological conjugacy; Cantor system; Sturmian subshift; Bratelli-Vershik representation},
language = {eng},
number = {1},
pages = {25-45},
title = {Orbit equivalence and Kakutani equivalence with Sturmian subshifts},
url = {http://eudml.org/doc/216787},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Dartnell, P.
AU - Durand, F.
AU - Maass, A.
TI - Orbit equivalence and Kakutani equivalence with Sturmian subshifts
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 1
SP - 25
EP - 45
AB - Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.
LA - eng
KW - Sturmian system; dimension group; Bratteli-Vershik representation; minimal system; orbit equivalence; Kakutani equivalence; topological conjugacy; Cantor system; Sturmian subshift; Bratelli-Vershik representation
UR - http://eudml.org/doc/216787
ER -

References

top
  1. [BS] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189. 
  2. [BH] M. Boyle and D. Handelmann, Orbit equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210. 
  3. [BT] M. Boyle and J. Tomiyama, Bounded topological equivalence and C*-algebras, J. Math. Soc. Japan 50 (1998), 317-329. Zbl0940.37004
  4. [D] F. Durand, Contributions à l'étude des suites et systèmes dynamiques substitutifs, thèse de doctorat, Université d'Aix-Marseille II, 1996. 
  5. [DHS] F. Durand, B. Host and C. F. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993. Zbl1044.46543
  6. [ES] E. G. Effros and C.-L. Shen, Approximately finite C*-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191-204. Zbl0457.46046
  7. [F] A. H. Forrest, K-groups associated with substitution minimal systems, Israel J. of Math. 98 (1997), 101-139. Zbl0891.46042
  8. [GPS] T. Giordano, I. Putnam and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. Zbl0834.46053
  9. [GJ] R. Gjerde and O. Johansen, Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows, Ergodic Theory Dynam. Systems, to appear. Zbl0992.37008
  10. [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed.. Oxford, 1975. 
  11. [HM] G. A. Hedlund and M. Morse, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. Zbl0022.34003
  12. [HPS] R. H. Herman, I. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864. Zbl0786.46053
  13. [H] B. Host, Dimension groups and substitution dynamical systems, preprint 13, Inst. Math. de Luminy, 1995. 
  14. [K] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arithmetica 12 (1966), 193-212. Zbl0144.28902
  15. [MS] F. Mignosi et P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie Nombres Bordeaux 5 (1993), 221-233. 
  16. [O] N. Ormes, Strong orbit realizations for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133. Zbl0881.28013
  17. [P] B. Parvaix, Substitution invariant Sturmian bisequences, J. Théorie Nombres Bordeaux 11 (1999), 201-210. Zbl0978.11005
  18. [Q] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1988. Zbl1225.11001
  19. [S] C.-L. Shen, A note on the automorphism groups of simple dimension groups, Pacific J. Math. 89 (1980), 199-207. Zbl0471.46038
  20. [Su] F. Sugisaki, The relationship between entropy and strong orbit equivalence for the minimal homeomorphisms. II, Tokyo J. Math. 21 (1998), 311-351. Zbl1063.37500
  21. [V1] A. M. Vershik, A theorem on the Markov periodic approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-674. Zbl0559.47006
  22. [V2] A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Soviet Math. Dokl. 24 (1981), 97-100. Zbl0484.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.