Orbit equivalence and Kakutani equivalence with Sturmian subshifts
P. Dartnell; F. Durand; A. Maass
Studia Mathematica (2000)
- Volume: 142, Issue: 1, page 25-45
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDartnell, P., Durand, F., and Maass, A.. "Orbit equivalence and Kakutani equivalence with Sturmian subshifts." Studia Mathematica 142.1 (2000): 25-45. <http://eudml.org/doc/216787>.
@article{Dartnell2000,
abstract = {Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.},
author = {Dartnell, P., Durand, F., Maass, A.},
journal = {Studia Mathematica},
keywords = {Sturmian system; dimension group; Bratteli-Vershik representation; minimal system; orbit equivalence; Kakutani equivalence; topological conjugacy; Cantor system; Sturmian subshift; Bratelli-Vershik representation},
language = {eng},
number = {1},
pages = {25-45},
title = {Orbit equivalence and Kakutani equivalence with Sturmian subshifts},
url = {http://eudml.org/doc/216787},
volume = {142},
year = {2000},
}
TY - JOUR
AU - Dartnell, P.
AU - Durand, F.
AU - Maass, A.
TI - Orbit equivalence and Kakutani equivalence with Sturmian subshifts
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 1
SP - 25
EP - 45
AB - Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.
LA - eng
KW - Sturmian system; dimension group; Bratteli-Vershik representation; minimal system; orbit equivalence; Kakutani equivalence; topological conjugacy; Cantor system; Sturmian subshift; Bratelli-Vershik representation
UR - http://eudml.org/doc/216787
ER -
References
top- [BS] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189.
- [BH] M. Boyle and D. Handelmann, Orbit equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210.
- [BT] M. Boyle and J. Tomiyama, Bounded topological equivalence and C*-algebras, J. Math. Soc. Japan 50 (1998), 317-329. Zbl0940.37004
- [D] F. Durand, Contributions à l'étude des suites et systèmes dynamiques substitutifs, thèse de doctorat, Université d'Aix-Marseille II, 1996.
- [DHS] F. Durand, B. Host and C. F. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993. Zbl1044.46543
- [ES] E. G. Effros and C.-L. Shen, Approximately finite C*-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191-204. Zbl0457.46046
- [F] A. H. Forrest, K-groups associated with substitution minimal systems, Israel J. of Math. 98 (1997), 101-139. Zbl0891.46042
- [GPS] T. Giordano, I. Putnam and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. Zbl0834.46053
- [GJ] R. Gjerde and O. Johansen, Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows, Ergodic Theory Dynam. Systems, to appear. Zbl0992.37008
- [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed.. Oxford, 1975.
- [HM] G. A. Hedlund and M. Morse, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. Zbl0022.34003
- [HPS] R. H. Herman, I. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864. Zbl0786.46053
- [H] B. Host, Dimension groups and substitution dynamical systems, preprint 13, Inst. Math. de Luminy, 1995.
- [K] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arithmetica 12 (1966), 193-212. Zbl0144.28902
- [MS] F. Mignosi et P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie Nombres Bordeaux 5 (1993), 221-233.
- [O] N. Ormes, Strong orbit realizations for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133. Zbl0881.28013
- [P] B. Parvaix, Substitution invariant Sturmian bisequences, J. Théorie Nombres Bordeaux 11 (1999), 201-210. Zbl0978.11005
- [Q] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1988. Zbl1225.11001
- [S] C.-L. Shen, A note on the automorphism groups of simple dimension groups, Pacific J. Math. 89 (1980), 199-207. Zbl0471.46038
- [Su] F. Sugisaki, The relationship between entropy and strong orbit equivalence for the minimal homeomorphisms. II, Tokyo J. Math. 21 (1998), 311-351. Zbl1063.37500
- [V1] A. M. Vershik, A theorem on the Markov periodic approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-674. Zbl0559.47006
- [V2] A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Soviet Math. Dokl. 24 (1981), 97-100. Zbl0484.47005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.