# Distribution and rearrangement estimates of the maximal function and interpolation

Irina Asekritova; Natan Krugljak; Lech Maligranda; Lars-Erik Persson

Studia Mathematica (1997)

- Volume: 124, Issue: 2, page 107-132
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topAsekritova, Irina, et al. "Distribution and rearrangement estimates of the maximal function and interpolation." Studia Mathematica 124.2 (1997): 107-132. <http://eudml.org/doc/216401>.

@article{Asekritova1997,

abstract = {There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous methods allow us to obtain K-functional formulas in terms of the maximal function for couples of weighted $L_p$-spaces.},

author = {Asekritova, Irina, Krugljak, Natan, Maligranda, Lech, Persson, Lars-Erik},

journal = {Studia Mathematica},

keywords = {maximal functions; weights; weak type estimate; rearrangement; distribution functioni; inequalities; interpolation; K-functional; weighted spaces; distribution functions; Riesz inequality; Wiener inequality; Stein inequality; Herz inequality},

language = {eng},

number = {2},

pages = {107-132},

title = {Distribution and rearrangement estimates of the maximal function and interpolation},

url = {http://eudml.org/doc/216401},

volume = {124},

year = {1997},

}

TY - JOUR

AU - Asekritova, Irina

AU - Krugljak, Natan

AU - Maligranda, Lech

AU - Persson, Lars-Erik

TI - Distribution and rearrangement estimates of the maximal function and interpolation

JO - Studia Mathematica

PY - 1997

VL - 124

IS - 2

SP - 107

EP - 132

AB - There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous methods allow us to obtain K-functional formulas in terms of the maximal function for couples of weighted $L_p$-spaces.

LA - eng

KW - maximal functions; weights; weak type estimate; rearrangement; distribution functioni; inequalities; interpolation; K-functional; weighted spaces; distribution functions; Riesz inequality; Wiener inequality; Stein inequality; Herz inequality

UR - http://eudml.org/doc/216401

ER -

## References

top- [1] I. U. Asekritova, On the K-functional of the pair $({K}_{\Phi}0\left(X\right),{K}_{\Phi}1\left(X\right))$, in: Theory of Functions of Several Real Variables, Yaroslavl’, 1980, 3-32 (in Russian).
- [2] C. Bennett and R. Sharpley, Weak type inequalities for ${H}^{p}$ and BMO, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 201-229. Zbl0423.30026
- [3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
- [4] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071
- [5] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. Zbl0047.10201
- [6] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- [7] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116. Zbl56.0264.02
- [8] C. Herz, The Hardy-Littlewood maximal theorem, in: Symposium on Harmonic Analysis, University of Warwick, 1968, 1-27.
- [9] L. Maligranda, The K-functional for symmetric spaces, in: Lecture Notes in Math. 1070, Springer, 1984, 169-182.
- [10] F. Riesz, Sur un théorème de maximum de MM. Hardy et Littlewood, J. London Math. Soc. 7 (1932), 10-13.
- [11] P. Sjögren, A remark on the maximal function for measures in ℝ, Amer. J. Math. 105 (1983), 1231-1233.
- [12] E. M. Stein, Note on the class LlogL, Studia Math. 32 (1969), 305-310. Zbl0182.47803
- [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
- [14] A. M. Vargas, On the maximal function for rotation invariant measures in ℝ, Studia Math. 110 (1994), 9-17. Zbl0818.42009
- [15] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18. Zbl0021.23501
- [16] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, Cambridge, 1959. Zbl0085.05601

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.