High order representation formulas and embedding theorems on stratified groups and generalizations

Guozhen Lu; Richard Wheeden

Studia Mathematica (2000)

  • Volume: 142, Issue: 2, page 101-133
  • ISSN: 0039-3223

Abstract

top
We derive various integral representation formulas for a function minus a polynomial in terms of vector field gradients of the function of appropriately high order. Our results hold in the general setting of metric spaces, including those associated with Carnot-Carathéodory vector fields, under the assumption that a suitable L 1 to L 1 Poincaré inequality holds. Of particular interest are the representation formulas in Euclidean space and stratified groups, where polynomials exist and L 1 to L 1 Poincaré inequalities involving high order derivatives are known to hold. We apply the formulas to derive embedding theorems and potential type inequalities involving high order derivatives.

How to cite

top

Lu, Guozhen, and Wheeden, Richard. "High order representation formulas and embedding theorems on stratified groups and generalizations." Studia Mathematica 142.2 (2000): 101-133. <http://eudml.org/doc/216792>.

@article{Lu2000,
abstract = {We derive various integral representation formulas for a function minus a polynomial in terms of vector field gradients of the function of appropriately high order. Our results hold in the general setting of metric spaces, including those associated with Carnot-Carathéodory vector fields, under the assumption that a suitable $L^1$ to $L^1$ Poincaré inequality holds. Of particular interest are the representation formulas in Euclidean space and stratified groups, where polynomials exist and $L^1$ to $L^1$ Poincaré inequalities involving high order derivatives are known to hold. We apply the formulas to derive embedding theorems and potential type inequalities involving high order derivatives.},
author = {Lu, Guozhen, Wheeden, Richard},
journal = {Studia Mathematica},
keywords = {Poincaré inequalities; doubling measures; stratified groups; polynomials; representation formulas; vector fields; embedding theorems; representation formula; Poincaré inequality; embedding theorem; polynomial; stratified group; vector field; doubling measure; Carnot-Carathéodory vector fields},
language = {eng},
number = {2},
pages = {101-133},
title = {High order representation formulas and embedding theorems on stratified groups and generalizations},
url = {http://eudml.org/doc/216792},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Lu, Guozhen
AU - Wheeden, Richard
TI - High order representation formulas and embedding theorems on stratified groups and generalizations
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 2
SP - 101
EP - 133
AB - We derive various integral representation formulas for a function minus a polynomial in terms of vector field gradients of the function of appropriately high order. Our results hold in the general setting of metric spaces, including those associated with Carnot-Carathéodory vector fields, under the assumption that a suitable $L^1$ to $L^1$ Poincaré inequality holds. Of particular interest are the representation formulas in Euclidean space and stratified groups, where polynomials exist and $L^1$ to $L^1$ Poincaré inequalities involving high order derivatives are known to hold. We apply the formulas to derive embedding theorems and potential type inequalities involving high order derivatives.
LA - eng
KW - Poincaré inequalities; doubling measures; stratified groups; polynomials; representation formulas; vector fields; embedding theorems; representation formula; Poincaré inequality; embedding theorem; polynomial; stratified group; vector field; doubling measure; Carnot-Carathéodory vector fields
UR - http://eudml.org/doc/216792
ER -

References

top
  1. [AH] D. Adams and L. Hedberg, Function Spaces and Potential Theory, Grund- lehren Math. Wiss. 314, Springer, New York, 1996. 
  2. [B] B. Bojarski, Remarks on Sobolev imbedding theorems, in: Lecture Notes in Math. 1351, Springer, New York, 1988, 52-68. 
  3. [BH] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92. Zbl0810.46030
  4. [C1] S. Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67-86. 
  5. [C2] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188. 
  6. [C3] S. Campanato, Proprietà di una famiglia di spazi funzionali, ibid. 18 (1964), 137-160. Zbl0133.06801
  7. [CDG] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. Zbl0893.35023
  8. [CW] S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), 1191-1226. Zbl0575.42026
  9. [FP] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in: Proc. Conf. on Harmonic Analysis (Chicago 1980), W. Beckner et al. (eds.), Wads- worth, 1981, Vol. 2, 590-606. 
  10. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1980. 
  11. [F] B. Franchi, Inégalités de Sobolev pour des champs de vecteurs lipschitziens, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 329-332. Zbl0734.46023
  12. [FGW] B. Franchi, C. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. Zbl0822.46032
  13. [FHK] B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, preprint, 1998. Zbl0938.46037
  14. [FL] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. Zbl0552.35032
  15. [FLW1] B. Franchi, G. Z. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026
  16. [FLW2] B. Franchi, G. Z. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1996, no. 1, 1-14. Zbl0856.43006
  17. [FW] B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequal. Appl. 3 (1999), 65-89. Zbl0934.46037
  18. [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
  19. [H] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. Zbl0859.46022
  20. [HK] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., to appear. Zbl0954.46022
  21. [He] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. Zbl0283.26003
  22. [LLW] Y. Liu, G. Z. Lu and R. L. Wheeden, Several equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces, preprint, 1998. 
  23. [L1] G. Z. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439. Zbl0804.35015
  24. [L2] G. Z. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466. Zbl0860.35006
  25. [L3] G. Z. Lu, Local and global interpolation inequalities for the Folland-Stein Sobolev spaces and polynomials on the stratified groups, Math. Res. Lett. 4 (1997), 777-790. Zbl0910.26007
  26. [L4] G. Z. Lu, Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups, Acta Math. Sinica Ser. B, to appear. Zbl0973.46020
  27. [L5] G. Z. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applications, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 429-434. Zbl0842.46019
  28. [L6] G. Z. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type, Approx. Theory Appl. 14 (1998), 69-80. Zbl0916.46026
  29. [LP] G. Z. Lu and C. Pérez, L p to L 1 Poincaré inequalities for 0<p<1 imply representation formulas, preprint, 1999. 
  30. [LW1] G. Z. Lu and R. L. Wheeden, Poincaré inequalities, isoperimetric estimates and representation formulas on product spaces, Indiana Univ. Math. J. 47 (1998), 123-151. Zbl0931.26007
  31. [LW2] G. Z. Lu and R. L. Wheeden, An optimal representation formula for Carnot-Carathéodory vector fields, Bull. London Math. Soc. 30 (1998), 578-584. Zbl0931.31003
  32. [N] D. Nhieu, Extension of Sobolev spaces on the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1559-1564. Zbl0841.43007
  33. [PW] C. Pérez and R. L. Wheeden, Uncertainty principle estimates for vector fields, to appear. Zbl0982.42010
  34. [SW] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874. Zbl0783.42011
  35. [SWZ] E. Sawyer, R. L. Wheeden and S. V. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523-580. Zbl0873.42012
  36. [So1] S. L. Sobolev, On a boundary value problem for polyharmonic equations, Amer. Math. Soc. Transl. 33 (1963), 1-40. 
  37. [So2] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Transl. Math. Monogr. 90, Amer. Math. Soc., Providence, RI, 1991. 
  38. [S1] G. Stampacchia, The spaces L p , λ , N p , λ and interpolation, Ann. Scuola Norm. Sup. Pisa 19 (1965), 443-462. 
  39. [S2] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189-258. Zbl0151.15401
  40. [Z] W. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.