High order representation formulas and embedding theorems on stratified groups and generalizations
Studia Mathematica (2000)
- Volume: 142, Issue: 2, page 101-133
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLu, Guozhen, and Wheeden, Richard. "High order representation formulas and embedding theorems on stratified groups and generalizations." Studia Mathematica 142.2 (2000): 101-133. <http://eudml.org/doc/216792>.
@article{Lu2000,
abstract = {We derive various integral representation formulas for a function minus a polynomial in terms of vector field gradients of the function of appropriately high order. Our results hold in the general setting of metric spaces, including those associated with Carnot-Carathéodory vector fields, under the assumption that a suitable $L^1$ to $L^1$ Poincaré inequality holds. Of particular interest are the representation formulas in Euclidean space and stratified groups, where polynomials exist and $L^1$ to $L^1$ Poincaré inequalities involving high order derivatives are known to hold. We apply the formulas to derive embedding theorems and potential type inequalities involving high order derivatives.},
author = {Lu, Guozhen, Wheeden, Richard},
journal = {Studia Mathematica},
keywords = {Poincaré inequalities; doubling measures; stratified groups; polynomials; representation formulas; vector fields; embedding theorems; representation formula; Poincaré inequality; embedding theorem; polynomial; stratified group; vector field; doubling measure; Carnot-Carathéodory vector fields},
language = {eng},
number = {2},
pages = {101-133},
title = {High order representation formulas and embedding theorems on stratified groups and generalizations},
url = {http://eudml.org/doc/216792},
volume = {142},
year = {2000},
}
TY - JOUR
AU - Lu, Guozhen
AU - Wheeden, Richard
TI - High order representation formulas and embedding theorems on stratified groups and generalizations
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 2
SP - 101
EP - 133
AB - We derive various integral representation formulas for a function minus a polynomial in terms of vector field gradients of the function of appropriately high order. Our results hold in the general setting of metric spaces, including those associated with Carnot-Carathéodory vector fields, under the assumption that a suitable $L^1$ to $L^1$ Poincaré inequality holds. Of particular interest are the representation formulas in Euclidean space and stratified groups, where polynomials exist and $L^1$ to $L^1$ Poincaré inequalities involving high order derivatives are known to hold. We apply the formulas to derive embedding theorems and potential type inequalities involving high order derivatives.
LA - eng
KW - Poincaré inequalities; doubling measures; stratified groups; polynomials; representation formulas; vector fields; embedding theorems; representation formula; Poincaré inequality; embedding theorem; polynomial; stratified group; vector field; doubling measure; Carnot-Carathéodory vector fields
UR - http://eudml.org/doc/216792
ER -
References
top- [AH] D. Adams and L. Hedberg, Function Spaces and Potential Theory, Grund- lehren Math. Wiss. 314, Springer, New York, 1996.
- [B] B. Bojarski, Remarks on Sobolev imbedding theorems, in: Lecture Notes in Math. 1351, Springer, New York, 1988, 52-68.
- [BH] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92. Zbl0810.46030
- [C1] S. Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67-86.
- [C2] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
- [C3] S. Campanato, Proprietà di una famiglia di spazi funzionali, ibid. 18 (1964), 137-160. Zbl0133.06801
- [CDG] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. Zbl0893.35023
- [CW] S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), 1191-1226. Zbl0575.42026
- [FP] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in: Proc. Conf. on Harmonic Analysis (Chicago 1980), W. Beckner et al. (eds.), Wads- worth, 1981, Vol. 2, 590-606.
- [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1980.
- [F] B. Franchi, Inégalités de Sobolev pour des champs de vecteurs lipschitziens, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 329-332. Zbl0734.46023
- [FGW] B. Franchi, C. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. Zbl0822.46032
- [FHK] B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, preprint, 1998. Zbl0938.46037
- [FL] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. Zbl0552.35032
- [FLW1] B. Franchi, G. Z. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026
- [FLW2] B. Franchi, G. Z. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1996, no. 1, 1-14. Zbl0856.43006
- [FW] B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequal. Appl. 3 (1999), 65-89. Zbl0934.46037
- [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
- [H] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. Zbl0859.46022
- [HK] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., to appear. Zbl0954.46022
- [He] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. Zbl0283.26003
- [LLW] Y. Liu, G. Z. Lu and R. L. Wheeden, Several equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces, preprint, 1998.
- [L1] G. Z. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439. Zbl0804.35015
- [L2] G. Z. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466. Zbl0860.35006
- [L3] G. Z. Lu, Local and global interpolation inequalities for the Folland-Stein Sobolev spaces and polynomials on the stratified groups, Math. Res. Lett. 4 (1997), 777-790. Zbl0910.26007
- [L4] G. Z. Lu, Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups, Acta Math. Sinica Ser. B, to appear. Zbl0973.46020
- [L5] G. Z. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applications, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 429-434. Zbl0842.46019
- [L6] G. Z. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type, Approx. Theory Appl. 14 (1998), 69-80. Zbl0916.46026
- [LP] G. Z. Lu and C. Pérez, to Poincaré inequalities for 0<p<1 imply representation formulas, preprint, 1999.
- [LW1] G. Z. Lu and R. L. Wheeden, Poincaré inequalities, isoperimetric estimates and representation formulas on product spaces, Indiana Univ. Math. J. 47 (1998), 123-151. Zbl0931.26007
- [LW2] G. Z. Lu and R. L. Wheeden, An optimal representation formula for Carnot-Carathéodory vector fields, Bull. London Math. Soc. 30 (1998), 578-584. Zbl0931.31003
- [N] D. Nhieu, Extension of Sobolev spaces on the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1559-1564. Zbl0841.43007
- [PW] C. Pérez and R. L. Wheeden, Uncertainty principle estimates for vector fields, to appear. Zbl0982.42010
- [SW] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874. Zbl0783.42011
- [SWZ] E. Sawyer, R. L. Wheeden and S. V. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523-580. Zbl0873.42012
- [So1] S. L. Sobolev, On a boundary value problem for polyharmonic equations, Amer. Math. Soc. Transl. 33 (1963), 1-40.
- [So2] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Transl. Math. Monogr. 90, Amer. Math. Soc., Providence, RI, 1991.
- [S1] G. Stampacchia, The spaces , and interpolation, Ann. Scuola Norm. Sup. Pisa 19 (1965), 443-462.
- [S2] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189-258. Zbl0151.15401
- [Z] W. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.