On least squares estimation of Fourier coefficients and of the regression function

Waldemar Popiński

Applicationes Mathematicae (1993)

  • Volume: 22, Issue: 1, page 91-102
  • ISSN: 1233-7234

How to cite

top

Popiński, Waldemar. "On least squares estimation of Fourier coefficients and of the regression function." Applicationes Mathematicae 22.1 (1993): 91-102. <http://eudml.org/doc/219086>.

@article{Popiński1993,
abstract = {},
author = {Popiński, Waldemar},
journal = {Applicationes Mathematicae},
keywords = {Fourier series; consistent estimator; least squares method; regression; mean square prediction error; nonparametric regression; nonparametric function fitting; limits in probability; complete orthonormal system},
language = {eng},
number = {1},
pages = {91-102},
title = {On least squares estimation of Fourier coefficients and of the regression function},
url = {http://eudml.org/doc/219086},
volume = {22},
year = {1993},
}

TY - JOUR
AU - Popiński, Waldemar
TI - On least squares estimation of Fourier coefficients and of the regression function
JO - Applicationes Mathematicae
PY - 1993
VL - 22
IS - 1
SP - 91
EP - 102
AB -
LA - eng
KW - Fourier series; consistent estimator; least squares method; regression; mean square prediction error; nonparametric regression; nonparametric function fitting; limits in probability; complete orthonormal system
UR - http://eudml.org/doc/219086
ER -

References

top
  1. [1] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control AC-19 (1974), 716-723 Zbl0314.62039
  2. [2] Y. S. Chow and H. Teicher, Probability Theory, Independence, Interchangeability, Martingales, Springer, Heidelberg, 1978 
  3. [3] C. L. Mallows, Some comments on C_p, Technometrics 15 (1973), 661-675 
  4. [4] B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the C_p criterion in projection type estimation of a regression function, Teor. Veroyatnost. i Primenen. 35 (1990), 305-317 (in Russian) 
  5. [5] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358 Zbl0649.62034
  6. [6] G. Sansone, Orthogonal Functions, Interscience, New York, 1959. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.