Consistency of trigonometric and polynomial regression estimators
Applicationes Mathematicae (1998)
- Volume: 25, Issue: 1, page 73-83
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topPopiński, Waldemar. "Consistency of trigonometric and polynomial regression estimators." Applicationes Mathematicae 25.1 (1998): 73-83. <http://eudml.org/doc/219195>.
@article{Popiński1998,
abstract = {The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in [a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat\{f\}_N\Vert , \vert f(x)-_N(x)\vert $, $x\in [a,b]$, and $E\Vert f-_N\Vert ^2$ of the projection estimator $\widehat\{f\}_N(x) = \sum _\{k=0\}^N\widehat\{c\}_ke_k(x)$ for $\widehat\{c\}_0,\widehat\{c\}_1,\ldots ,\widehat\{c\}_N$ determined by the least squares method and $f\in L^2[a,b]$.},
author = {Popiński, Waldemar},
journal = {Applicationes Mathematicae},
keywords = {consistent estimator; orthonormal system; least squares method; regression; nonparametric regression},
language = {eng},
number = {1},
pages = {73-83},
title = {Consistency of trigonometric and polynomial regression estimators},
url = {http://eudml.org/doc/219195},
volume = {25},
year = {1998},
}
TY - JOUR
AU - Popiński, Waldemar
TI - Consistency of trigonometric and polynomial regression estimators
JO - Applicationes Mathematicae
PY - 1998
VL - 25
IS - 1
SP - 73
EP - 83
AB - The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in [a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat{f}_N\Vert , \vert f(x)-_N(x)\vert $, $x\in [a,b]$, and $E\Vert f-_N\Vert ^2$ of the projection estimator $\widehat{f}_N(x) = \sum _{k=0}^N\widehat{c}_ke_k(x)$ for $\widehat{c}_0,\widehat{c}_1,\ldots ,\widehat{c}_N$ determined by the least squares method and $f\in L^2[a,b]$.
LA - eng
KW - consistent estimator; orthonormal system; least squares method; regression; nonparametric regression
UR - http://eudml.org/doc/219195
ER -
References
top- [1] R. L. Eubank and B. R. Jayasuriya, The asymptotic average square error for polynomial regression, Statistics 24 (1993), 311-319. Zbl0808.62036
- [2] J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996.
- [3] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conf. on Neural Networks, San Diego, Calif., IEEE Press, New York, 1988, 657-664.
- [4] G. G. Lorentz, Approximation of Functions, Holt, Reinehart and Winston, New York, 1966.
- [5] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687. Zbl0818.62041
- [6] G. V. Milovanovič, D. S. Mitrinovič and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994. Zbl0848.26001
- [7] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. Zbl0789.62032
- [8] W. Popiński, On Fourier coefficient estimators consistent in the mean-square sense, ibid., 275-284. Zbl0801.62040
- [9] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. Zbl0649.62034
- [10] G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959. Zbl0084.06106
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.