Consistency of trigonometric and polynomial regression estimators

Waldemar Popiński

Applicationes Mathematicae (1998)

  • Volume: 25, Issue: 1, page 73-83
  • ISSN: 1233-7234

Abstract

top
The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials e k , k=0,1,..., for the observation model y i = f ( x i ) + η i , i=1,...,n, where the η i are independent random variables with zero mean value and finite variance, and the observation points x i [ a , b ] , i=1,...,n, form a random sample from a distribution with density ϱ L 1 [ a , b ] . Sufficient and necessary conditions are obtained for consistency in the sense of the errors f - f ^ N , | f ( x ) - N ( x ) | , x [ a , b ] , and E f - N 2 of the projection estimator f ^ N ( x ) = k = 0 N c ^ k e k ( x ) for c ^ 0 , c ^ 1 , ... , c ^ N determined by the least squares method and f L 2 [ a , b ] .

How to cite

top

Popiński, Waldemar. "Consistency of trigonometric and polynomial regression estimators." Applicationes Mathematicae 25.1 (1998): 73-83. <http://eudml.org/doc/219195>.

@article{Popiński1998,
abstract = {The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in [a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat\{f\}_N\Vert , \vert f(x)-_N(x)\vert $, $x\in [a,b]$, and $E\Vert f-_N\Vert ^2$ of the projection estimator $\widehat\{f\}_N(x) = \sum _\{k=0\}^N\widehat\{c\}_ke_k(x)$ for $\widehat\{c\}_0,\widehat\{c\}_1,\ldots ,\widehat\{c\}_N$ determined by the least squares method and $f\in L^2[a,b]$.},
author = {Popiński, Waldemar},
journal = {Applicationes Mathematicae},
keywords = {consistent estimator; orthonormal system; least squares method; regression; nonparametric regression},
language = {eng},
number = {1},
pages = {73-83},
title = {Consistency of trigonometric and polynomial regression estimators},
url = {http://eudml.org/doc/219195},
volume = {25},
year = {1998},
}

TY - JOUR
AU - Popiński, Waldemar
TI - Consistency of trigonometric and polynomial regression estimators
JO - Applicationes Mathematicae
PY - 1998
VL - 25
IS - 1
SP - 73
EP - 83
AB - The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in [a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat{f}_N\Vert , \vert f(x)-_N(x)\vert $, $x\in [a,b]$, and $E\Vert f-_N\Vert ^2$ of the projection estimator $\widehat{f}_N(x) = \sum _{k=0}^N\widehat{c}_ke_k(x)$ for $\widehat{c}_0,\widehat{c}_1,\ldots ,\widehat{c}_N$ determined by the least squares method and $f\in L^2[a,b]$.
LA - eng
KW - consistent estimator; orthonormal system; least squares method; regression; nonparametric regression
UR - http://eudml.org/doc/219195
ER -

References

top
  1. [1] R. L. Eubank and B. R. Jayasuriya, The asymptotic average square error for polynomial regression, Statistics 24 (1993), 311-319. Zbl0808.62036
  2. [2] J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996. 
  3. [3] A. R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, in: Proc. Second Annual IEEE Conf. on Neural Networks, San Diego, Calif., IEEE Press, New York, 1988, 657-664. 
  4. [4] G. G. Lorentz, Approximation of Functions, Holt, Reinehart and Winston, New York, 1966. 
  5. [5] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687. Zbl0818.62041
  6. [6] G. V. Milovanovič, D. S. Mitrinovič and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994. Zbl0848.26001
  7. [7] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. Zbl0789.62032
  8. [8] W. Popiński, On Fourier coefficient estimators consistent in the mean-square sense, ibid., 275-284. Zbl0801.62040
  9. [9] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. Zbl0649.62034
  10. [10] G. Sansone, Orthogonal Functions, Interscience Publ., New York, 1959. Zbl0084.06106

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.