Convergence rates of orthogonal series regression estimators
Applicationes Mathematicae (2000)
- Volume: 27, Issue: 4, page 445-454
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topPopiński, Waldemar. "Convergence rates of orthogonal series regression estimators." Applicationes Mathematicae 27.4 (2000): 445-454. <http://eudml.org/doc/219287>.
@article{Popiński2000,
abstract = {General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Yi,Xi), i=1,...,n, where $X_i ∈ A ⊂ ℝ^d$ have marginal distribution with density $ϱ ∈ L^1(A)$ and Var( Y | X = x) is bounded on A. Convergence rates of the errors $E_X(f(X)-\widehat\{f\}_N(X))^2$ and $\Vert f-\widehat\{f\}_N\Vert _∞$ for the estimator $\widehat\{f\}_N(x) = \sum _\{k=1\}^N\widehat\{c\}_ke_k(x)$, constructed using an orthonormal system $e_k$, k=1,2,..., in $L^2(A)$ are obtained.},
author = {Popiński, Waldemar},
journal = {Applicationes Mathematicae},
keywords = {orthonormal system; nonparametric series regression; least squares method; convergence rate},
language = {eng},
number = {4},
pages = {445-454},
title = {Convergence rates of orthogonal series regression estimators},
url = {http://eudml.org/doc/219287},
volume = {27},
year = {2000},
}
TY - JOUR
AU - Popiński, Waldemar
TI - Convergence rates of orthogonal series regression estimators
JO - Applicationes Mathematicae
PY - 2000
VL - 27
IS - 4
SP - 445
EP - 454
AB - General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Yi,Xi), i=1,...,n, where $X_i ∈ A ⊂ ℝ^d$ have marginal distribution with density $ϱ ∈ L^1(A)$ and Var( Y | X = x) is bounded on A. Convergence rates of the errors $E_X(f(X)-\widehat{f}_N(X))^2$ and $\Vert f-\widehat{f}_N\Vert _∞$ for the estimator $\widehat{f}_N(x) = \sum _{k=1}^N\widehat{c}_ke_k(x)$, constructed using an orthonormal system $e_k$, k=1,2,..., in $L^2(A)$ are obtained.
LA - eng
KW - orthonormal system; nonparametric series regression; least squares method; convergence rate
UR - http://eudml.org/doc/219287
ER -
References
top- [1] L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence, J. Bernoulli Soc. 4 (1998), 329-375. Zbl0954.62033
- [2] D. D. Cox, Approximation of least squares regression on nested subspaces, Ann. Statist. 16 (1988), 713-732. Zbl0669.62047
- [3] L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332-342. Zbl0874.62048
- [4] J. Z. Huang, Projection estimation in multiple regression with application to functional ANOVA models, Ann. Statist. 26 (1998), 242-272. Zbl0930.62042
- [5] G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966. Zbl0153.38901
- [6] G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687. Zbl0818.62041
- [7] P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999), 51-80. Zbl1053.65506
- [8] W. Popiński, On least squares estimation of Fourier coefficients and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102. Zbl0789.62032
- [9] W. Popiński, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73-83. Zbl0895.62047
- [10] W. Popiński, A note on orthogonal series regression function estimators, ibid. 26 (1999), 281-291. Zbl0992.62039
- [11] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. Zbl0649.62034
- [12] C. J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Statist. 10 (1982), 1040-1053. Zbl0511.62048
- [13] G. Viennet, Least-square estimation for regression on random design for absolutely regular observations, Statist. Probab. Lett. 43 (1999), 13-23. Zbl0933.62034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.