A class of integrable polynomial vector fields
Applicationes Mathematicae (1995)
- Volume: 23, Issue: 3, page 339-350
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center of type (R), Mat. Sb. 30 (72) (1952), 181-196 (in Russian); English transl.: Amer. Math. Soc. Transl. 100 (1954), 397-413. Zbl0059.08201
- [2] J. Chavarriga, Integrable systems in the plane with a center type linear part, Appl. Math. (Warsaw) 22 (1994), 285-309. Zbl0809.34002
- [3] C. Li, Two problems of planar quadratic systems, Sci. Sinica Ser. A 26 (1983), 471-481. Zbl0534.34033
- [4] N. G. Lloyd, Small amplitude limit cycles of polynomial differential equations, in: Lecture Notes in Math. 1032, Springer, 1983, 346-356.
- [5] V. A. Lunkevich and K. S. Sibirskiĭ , Integrals of a general quadratic differential system in cases of a center, Differential Equations 18 (1982), 563-568. Zbl0499.34017
- [6] D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, in: Bifurcations and Periodic Orbits of Vector Fields, Kluwer Acad. Publ., 1993, 429-467. Zbl0790.34031
- [7] S. Shi, A method of constructing cycles without contact around a weak focus, J. Differential Equations 41 (1981), 301-312. Zbl0442.34029
- [8] H. Żołądek, On a certain generalization of Bautin's Theorem, preprint, Institute of Mathematics, University of Warsaw, 1991. Zbl0838.34035