Minimax mutual prediction
Applicationes Mathematicae (2000)
- Volume: 27, Issue: 4, page 437-444
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topTrybuła, Stanisław. "Minimax mutual prediction." Applicationes Mathematicae 27.4 (2000): 437-444. <http://eudml.org/doc/219286>.
@article{Trybuła2000,
abstract = {The problems of minimax mutual prediction are considered for binomial and multinomial random variables and for sums of limited random variables with unknown distribution. For the loss function being a linear combination of quadratic losses minimax mutual predictors are determined where the parameters of predictors are obtained by numerical solution of some equations.},
author = {Trybuła, Stanisław},
journal = {Applicationes Mathematicae},
keywords = {multinomial; Bayes; binomial; minimax mutual predictor},
language = {eng},
number = {4},
pages = {437-444},
title = {Minimax mutual prediction},
url = {http://eudml.org/doc/219286},
volume = {27},
year = {2000},
}
TY - JOUR
AU - Trybuła, Stanisław
TI - Minimax mutual prediction
JO - Applicationes Mathematicae
PY - 2000
VL - 27
IS - 4
SP - 437
EP - 444
AB - The problems of minimax mutual prediction are considered for binomial and multinomial random variables and for sums of limited random variables with unknown distribution. For the loss function being a linear combination of quadratic losses minimax mutual predictors are determined where the parameters of predictors are obtained by numerical solution of some equations.
LA - eng
KW - multinomial; Bayes; binomial; minimax mutual predictor
UR - http://eudml.org/doc/219286
ER -
References
top- [1] J. L. Hodges and E. L. Lehmann, Some problems in minimax point estimation, Ann. Math. Statist. 21 (1950), 182-191. Zbl0038.09802
- [2] E. G. Phadia, Minimax estimation of cumulative distribution functions, Ann. Statist. 1 (1973), 1149-1157. Zbl0289.62031
- [3] S. Trybuła, Some problems of simultaneous minimax estimation, Ann. Math. Statist. 29 (1958), 245-253. Zbl0087.14201
- [4] M. Wilczyński, Minimax estimation for multinomial and multivariate hypergeometric distribution, Sankhyā, Ser. A 47 (1985), 128-132. Zbl0575.62012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.