The catenary degree of Krull monoids I
Alfred Geroldinger[1]; David J. Grynkiewicz[1]; Wolfgang A. Schmid[2]
- [1] Institut für Mathematik und Wissenschaftliches Rechnen Karl–Franzens–Universität Graz Heinrichstraße 36 8010 Graz, Austria
- [2] CMLS École polytechnique 91128 Palaiseau cedex, France
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 1, page 137-169
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGeroldinger, Alfred, Grynkiewicz, David J., and Schmid, Wolfgang A.. "The catenary degree of Krull monoids I." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 137-169. <http://eudml.org/doc/219687>.
@article{Geroldinger2011,
abstract = {Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree $\mathsf c (H)$ of $H$ is the smallest integer $N$ with the following property: for each $a \in H$ and each two factorizations $z, z^\{\prime\}$ of $a$, there exist factorizations $z = z_0, \ldots , z_k = z^\{\prime\}$ of $a$ such that, for each $i \in [1, k]$, $z_i$ arises from $z_\{i-1\}$ by replacing at most $N$ atoms from $z_\{i-1\}$ by at most $N$ new atoms. Under a very mild condition on the Davenport constant of $G$, we establish a new and simple characterization of the catenary degree. This characterization gives a new structural understanding of the catenary degree. In particular, it clarifies the relationship between $\mathsf c (H)$ and the set of distances of $H$ and opens the way towards obtaining more detailed results on the catenary degree. As first applications, we give a new upper bound on $\mathsf c(H)$ and characterize when $\mathsf c(H)\le 4$.},
affiliation = {Institut für Mathematik und Wissenschaftliches Rechnen Karl–Franzens–Universität Graz Heinrichstraße 36 8010 Graz, Austria; Institut für Mathematik und Wissenschaftliches Rechnen Karl–Franzens–Universität Graz Heinrichstraße 36 8010 Graz, Austria; CMLS École polytechnique 91128 Palaiseau cedex, France},
author = {Geroldinger, Alfred, Grynkiewicz, David J., Schmid, Wolfgang A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {non-unique factorizations; Krull monoids; catenary degree; zero-sum sequence; Davenport constant},
language = {eng},
month = {3},
number = {1},
pages = {137-169},
publisher = {Société Arithmétique de Bordeaux},
title = {The catenary degree of Krull monoids I},
url = {http://eudml.org/doc/219687},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Geroldinger, Alfred
AU - Grynkiewicz, David J.
AU - Schmid, Wolfgang A.
TI - The catenary degree of Krull monoids I
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 137
EP - 169
AB - Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree $\mathsf c (H)$ of $H$ is the smallest integer $N$ with the following property: for each $a \in H$ and each two factorizations $z, z^{\prime}$ of $a$, there exist factorizations $z = z_0, \ldots , z_k = z^{\prime}$ of $a$ such that, for each $i \in [1, k]$, $z_i$ arises from $z_{i-1}$ by replacing at most $N$ atoms from $z_{i-1}$ by at most $N$ new atoms. Under a very mild condition on the Davenport constant of $G$, we establish a new and simple characterization of the catenary degree. This characterization gives a new structural understanding of the catenary degree. In particular, it clarifies the relationship between $\mathsf c (H)$ and the set of distances of $H$ and opens the way towards obtaining more detailed results on the catenary degree. As first applications, we give a new upper bound on $\mathsf c(H)$ and characterize when $\mathsf c(H)\le 4$.
LA - eng
KW - non-unique factorizations; Krull monoids; catenary degree; zero-sum sequence; Davenport constant
UR - http://eudml.org/doc/219687
ER -
References
top- J. Amos, S.T. Chapman, N. Hine, and J. Paixao, Sets of lengths do not characterize numerical monoids. Integers 7 (2007), Paper A50, 8p. Zbl1139.20056MR2373112
- D.D. Anderson, S.T. Chapman, F. Halter-Koch, and M. Zafrullah, Criteria for unique factorization in integral domains. J. Pure Appl. Algebra 127 (1998), 205–218. Zbl0949.13015MR1617195
- P. Baginski, S.T. Chapman, R. Rodriguez, G.J. Schaeffer, and Y. She, On the delta set and catenary degree of Krull monoids with infinite cyclic divisor class group. J. Pure Appl. Algebra 214 (2010), 1334 – 1339. Zbl1193.20071MR2593666
- G. Bhowmik and J.-C. Schlage-Puchta, Davenport’s constant for groups of the form . Additive Combinatorics (A. Granville, M.B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes, vol. 43, American Mathematical Society, 2007, pp. 307–326. Zbl1173.11012MR2359480
- C. Bowles, S.T. Chapman, N. Kaplan, and D. Reiser, On delta sets of numerical monoids. J. Algebra Appl. 5 (2006), 695–718. Zbl1115.20052MR2269412
- S.T. Chapman, J. Daigle, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids using nonminimal sets of generators. Commun. Algebra 38 (2010), 2622–2634. Zbl1209.20058MR2674690
- S.T. Chapman, P.A. García-Sánchez, and D. Llena, The catenary and tame degree of numerical monoids. Forum Math. 21 (2009), 117 – 129. Zbl1177.20070MR2494887
- S.T. Chapman, P.A. García-Sánchez, D. Llena, and J. Marshall, Elements in a numerical semigroup with factorizations of the same length. Can. Math. Bull. 54 (2010), 39–43. Zbl1213.20056
- S.T. Chapman, P.A. García-Sánchez, D. Llena, V. Ponomarenko, and J.C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscr. Math. 120 (2006), 253–264. Zbl1117.20045MR2243561
- S.T. Chapman, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids are eventually periodic. Aequationes Math. 77 (2009), 273–279. Zbl1204.20078MR2520501
- Y. Edel, Sequences in abelian groups of odd order without zero-sum subsequences of length . Des. Codes Cryptography 47 (2008), 125–134. Zbl1196.11043MR2375461
- Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin, and L. Rackham, Zero-sum problems in finite abelian groups and affine caps. Quarterly. J. Math., Oxford II. Ser. 58 (2007), 159–186. Zbl1205.11028MR2334860
- Y. Edel, S. Ferret, I. Landjev, and L. Storme, The classification of the largest caps in . J. Comb. Theory, Ser. A 99 (2002), 95 –110. Zbl1023.51007MR1911459
- M. Freeze and W.A. Schmid, Remarks on a generalization of the Davenport constant. Discrete Math. 310 (2010), 3373–3389. Zbl1228.05302MR2721098
- W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups. Period. Math. Hung. 38 (1999), 179–211. Zbl0980.11014MR1756238
- —, Zero-sum problems in finite abelian groups : a survey. Expo. Math. 24 (2006), 337–369. Zbl1122.11013MR2313123
- A. Geroldinger, Additive group theory and non-unique factorizations. Combinatorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86. Zbl1221.20045MR2522037
- A. Geroldinger, D.J. Grynkiewicz, and W.A. Schmid, The catenary degree of Krull monoids II. manuscript. Zbl1253.11101
- A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006. Zbl1113.11002MR2194494
- A. Geroldinger and W. Hassler, Arithmetic of Mori domains and monoids. J. Algebra 319 (2008), 3419–3463. Zbl1195.13022MR2408326
- A. Geroldinger and J. Kaczorowski, Analytic and arithmetic theory of semigroups with divisor theory. J. Théor. Nombres Bordx. 4 (1992), 199–238. Zbl0780.11046MR1208863
- A. Geroldinger and R. Schneider, On Davenport’s constant. J. Comb. Theory, Ser. A 61 (1992), 147–152. Zbl0759.20008MR1178393
- R. Gilmer, Commutative Semigroup Rings. The University of Chicago Press, 1984. Zbl0566.20050MR741678
- P.A. Grillet, Commutative Semigroups. Kluwer Academic Publishers, 2001. Zbl1040.20048MR2017849
- F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory. Marcel Dekker, 1998. Zbl0953.13001MR1828371
- A. Iwaszkiewicz-Rudoszanska, On the distribution of coefficients of logarithmic derivatives of -functions attached to certain arithmetical semigroups. Monatsh. Math. 127 (1999), 189–202. Zbl0940.11040MR1680523
- —, On the distribution of prime divisors in arithmetical semigroups. Funct. Approximatio, Comment. Math. 27 (1999), 109 – 116. Zbl0964.11036MR1746844
- H. Kim, The distribution of prime divisors in Krull monoid domains. J. Pure Appl. Algebra 155 (2001), 203–210. Zbl0971.13015MR1801415
- H. Kim and Y. S. Park, Krull domains of generalized power series. J. Algebra 237 (2001), 292–301. Zbl1039.13012MR1813891
- C.R. Leedham-Green, The class group of Dedekind domains. Trans. Am. Math. Soc. 163 (1972), 493–500. Zbl0231.13008MR292806
- M. Omidali, The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences. Forum Math., to appear. Zbl1252.20057MR2494887
- O. Ordaz, A. Philipp, I. Santos, and W.A. Schmid, On the Olson and the strong Davenport constants. J. Théor. Nombres Bordx., to appear. Zbl1252.11011
- A. Potechin, Maximal caps in AG . Des. Codes Cryptography 46 (2008), 243–259. Zbl1187.51010MR2372838
- J.C. Rosales and P.A. García-Sánchez, Numerical Semigroups. Springer, 2009. Zbl1220.20047MR2549780
- W.A. Schmid, A realization theorem for sets of lengths. J. Number Theory 129 (2009), 990–999. Zbl1191.11031MR2516967
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.