On the Olson and the Strong Davenport constants
Oscar Ordaz[1]; Andreas Philipp[2]; Irene Santos[1]; Wolfgang A. Schmid[3]
- [1] Departamento de Matemáticas y Centro ISYS Facultad de Ciencias, Universidad Central de Venezuela Ap. 47567, Caracas 1041-A, Venezuela
- [2] Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria
- [3] CMLS, École polytechnique 91128 Palaiseau cedex, France
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 3, page 715-750
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topOrdaz, Oscar, et al. "On the Olson and the Strong Davenport constants." Journal de Théorie des Nombres de Bordeaux 23.3 (2011): 715-750. <http://eudml.org/doc/219794>.
@article{Ordaz2011,
abstract = {A subset $S$ of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of $S$ is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, $p$-groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general results, establishing new lower bounds for the cardinality of zero-sumfree sets for various types of groups. The quality of these bounds is explored via the treatment, which is computer-aided, of selected explicit examples. Moreover, we investigate a closely related notion, namely the maximal cardinality of minimal zero-sum sets, i.e., the Strong Davenport constant. In particular, we determine its value for elementary $p$-groups of rank at most $2$, paralleling and building on recent results on this problem for the Olson constant.},
affiliation = {Departamento de Matemáticas y Centro ISYS Facultad de Ciencias, Universidad Central de Venezuela Ap. 47567, Caracas 1041-A, Venezuela; Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria; Departamento de Matemáticas y Centro ISYS Facultad de Ciencias, Universidad Central de Venezuela Ap. 47567, Caracas 1041-A, Venezuela; CMLS, École polytechnique 91128 Palaiseau cedex, France},
author = {Ordaz, Oscar, Philipp, Andreas, Santos, Irene, Schmid, Wolfgang A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Davenport constant; Strong Davenport constant; Olson constant; zero-sumfree; zero-sum problem; zero sums; zero sum free sets; Davenport's constant; Olson's constant},
language = {eng},
month = {11},
number = {3},
pages = {715-750},
publisher = {Société Arithmétique de Bordeaux},
title = {On the Olson and the Strong Davenport constants},
url = {http://eudml.org/doc/219794},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Ordaz, Oscar
AU - Philipp, Andreas
AU - Santos, Irene
AU - Schmid, Wolfgang A.
TI - On the Olson and the Strong Davenport constants
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/11//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 3
SP - 715
EP - 750
AB - A subset $S$ of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of $S$ is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, $p$-groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general results, establishing new lower bounds for the cardinality of zero-sumfree sets for various types of groups. The quality of these bounds is explored via the treatment, which is computer-aided, of selected explicit examples. Moreover, we investigate a closely related notion, namely the maximal cardinality of minimal zero-sum sets, i.e., the Strong Davenport constant. In particular, we determine its value for elementary $p$-groups of rank at most $2$, paralleling and building on recent results on this problem for the Olson constant.
LA - eng
KW - Davenport constant; Strong Davenport constant; Olson constant; zero-sumfree; zero-sum problem; zero sums; zero sum free sets; Davenport's constant; Olson's constant
UR - http://eudml.org/doc/219794
ER -
References
top- P. Baginski, The strong Davenport constant and the Olson constant. Unpublished manuscript, 2005.
- G. Bhowmik and J.-Ch. Schlage-Puchta, An improvement on Olson’s constant for . Acta Arith. 141 (2001), 311–319. Zbl1213.11041MR2587290
- G. Bhowmik and J.-Ch. Schlage-Puchta, Additive combinatorics and geometry of numbers. Manuscript.
- É. Balandraud, An addition theorem and maximal zero-sumfree sets in . Israel J. Math, to appear. Zbl1287.11013
- S. T. Chapman, M. Freeze, and W. W. Smith, Minimal zero-sequences and the strong Davenport constant. Discrete Math. 203 (1999), 271–277. Zbl0944.20013MR1696250
- Ch. Delorme, A. Ortuño, and O. Ordaz, Some existence conditions for barycentric subsets. Rapport de Recherche 990, LRI, Paris-Sud, Orsay, France. 1995.
- Ch. Delorme, I. Márquez, O. Ordaz, and A. Ortuño, Existence conditions for barycentric sequences. Discrete Math. 281 (2004), 163–172. Zbl1080.20020MR2047764
- J.-M. Deshouillers and G. Prakash, Large zero-free subsets of . Manuscript.
- P. Erdős and H. Heilbronn, On the addition of residue classes . Acta Arith. 9 (1964), 149–159. Zbl0156.04801MR166186
- M. Freeze, W. D. Gao, and A. Geroldinger, The critical number of finite abelain groups. J. Number Theory 129 (2009), 2766–2777. Zbl1214.11113MR2549531
- W. D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups. Period. Math. Hungar 38 (1999), 179–211. Zbl0980.11014MR1756238
- W. D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey. Expo. Math. 24 (2006), 337–369. Zbl1122.11013MR2313123
- W. D. Gao, A. Geroldinger, and D. J. Grynkiewicz, Inverse zero-sum problems III. Acta Arith. 141 (2010), 103–152. Zbl1213.11178MR2579841
- W. D. Gao, I. Z. Ruzsa, and R. Thangadurai, Olson’s constant for the group . J. Combin. Theory Ser. A 107 (2004), 49–67. Zbl1107.11014MR2063953
- A. Geroldinger, Additive group theory and non-unique factorizations. In: Combinatorial Number Theory and Additive Group Theory, pages 1–86, Advanced Course Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009. Zbl1221.20045MR2522037
- A. Geroldinger, D. Grynkiewicz, and W. A. Schmid, The catenary degree of Krull monoids I. J. Théor. Nombres Bordeaux 23 (2011), 137–169. Zbl1253.11101MR2780623
- A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006. Zbl1113.11002MR2194494
- A. Geroldinger, M. Liebmann, and A. Philipp, On the Davenport constant and on the structure of extremal zero-sum free sequences. Period. Math. Hung., to appear. Zbl1263.11038
- R. K. Guy, Unsolved problems in number theory, third edition. Problem Books in Mathematics, Springer-Verlag, New York, 2004. Zbl0474.10001MR2076335
- Y. O. Hamidoune and G. Zémor, On zero-free subset sums. Acta Arith. 78 (1996), 143–152. Zbl0863.11016MR1424536
- H. H. Nguyen, E. Szemerédi, and V. H. Vu, Subset sums modulo a prime. Acta Arith. 131 (2008), 303–316. Zbl1136.11016MR2383688
- H. H. Nguyen and V. H. Vu, Classification theorems for sumsets modulo a prime. J. Combin. Theory Ser. A 116 (2009), 936–959. Zbl1196.11048MR2513643
- H. H. Nguyen and V. H. Vu, An asymptotic characterization for incomplete sets in vector spaces. Submitted.
- J. E. Olson, An addition theorem modulo . J. Combin. Theory 5 (1968), 45–52. Zbl0174.05202MR227129
- J. E. Olson, Sums of sets of group elements. Acta Arith. 28 (1975/76), 147–156. Zbl0318.10035MR382215
- O. Ordaz and D. Quiroz, On zero free sets. Divulg. Mat. 14 (2006), 1–10. Zbl1217.20033MR2586356
- Ch. Reiher, A proof of the theorem according to which every prime number possesses Property B. Submitted.
- S. Savchev and F. Chen, Long zero-free sequemces in finite cyclic groups. Discrete Math. 307 (2007), 2671–2679. Zbl1148.20038MR2351696
- W. A. Schmid, Inverse zero-sum problems II. Acta Arith. 143 (2010), 333–343. Zbl1219.11151MR2652584
- J. C. Subocz G., Some values of Olson’s constant. Divulg. Mat. 8 (2000), 121–128. Zbl0973.11025MR1802302
- E. Szemerédi, On a conjecture of Erdős and Heilbronn. Acta Arith. 17 (1970), 227–229. Zbl0222.10055MR268159
- P. Yuan, On the index of minimal zero-sum sequences over finte cyclic groups. J. Combin. Theory Ser. A 114 (2007), 1545–1551. Zbl1128.11011MR2360686
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.