Analytic and Geometric Logarithmic Sobolev Inequalities
- [1] Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse, France, and Institut Universitaire de France
Journées Équations aux dérivées partielles (2011)
- page 1-15
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topLedoux, Michel. "Analytic and Geometric Logarithmic Sobolev Inequalities." Journées Équations aux dérivées partielles (2011): 1-15. <http://eudml.org/doc/219690>.
@article{Ledoux2011,
abstract = {We survey analytic and geometric proofs of classical logarithmic Sobolev inequalities for Gaussian and more general strictly log-concave probability measures. Developments of the last decade link the two approaches through heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry and mass transportation.},
affiliation = {Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse, France, and Institut Universitaire de France},
author = {Ledoux, Michel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Logarithmic Sobolev inequality; heat kernel; Brunn-Minkowski inequality},
language = {eng},
month = {6},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Analytic and Geometric Logarithmic Sobolev Inequalities},
url = {http://eudml.org/doc/219690},
year = {2011},
}
TY - JOUR
AU - Ledoux, Michel
TI - Analytic and Geometric Logarithmic Sobolev Inequalities
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 15
AB - We survey analytic and geometric proofs of classical logarithmic Sobolev inequalities for Gaussian and more general strictly log-concave probability measures. Developments of the last decade link the two approaches through heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry and mass transportation.
LA - eng
KW - Logarithmic Sobolev inequality; heat kernel; Brunn-Minkowski inequality
UR - http://eudml.org/doc/219690
ER -
References
top- Ané, C. et al. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses, vol. 10. Soc. Math. de France (2000). Zbl0982.46026MR1845806
- Bakry, D. L’hypercontractivité et son utilisation en théorie des semigroupes. Ecole d’Eté de Probabilités de St-Flour. Springer Lecture Notes in Math. 1581, 1-114 (1994). Zbl0856.47026MR1307413
- Bakry, D. Functional inequalities for Markov semigroups. Probability Measures on Groups: Recent Directions and Trends. Proceedings of the CIMPA-TIFR School (2002). Tata Institute of Fundamental Research, New Delhi, 91-147 (2006). Zbl1148.60057MR2213477
- Bakry, D. and Émery, M. Diffusions hypercontractives. Séminaire de Probabilités, XIX. Springer Lecture Notes in Math. 1123, 177-206 (1985). Zbl0561.60080MR889476
- Bakry, D., Gentil, I. and Ledoux, M. Forthcoming monograph (2012).
- Bakry, D. and Ledoux, M. A logarithmic Sobolev form of the Li-Yau parabolic inequality. Revista Mat. Iberoamericana 22, 683-702 (2006). Zbl1116.58024MR2294794
- Barthe, F. Autour de l’inégalité de Brunn-Minkowski. Ann. Fac. Sci. Toulouse Math. 12, 127-178 (2003). Zbl1052.52002MR2123254
- Bobkov, S. and Ledoux, M. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10, 1028-1052 (2000). Zbl0969.26019MR1800062
- Bobkov, S. and Ledoux, M. From Brunn-Minkowski to sharp Sobolev inequalities. Annali di Matematica Pura ed Applicata 187, 369-384 (2008). Zbl1223.26036MR2393140
- Bobkov, S., Gentil, I. and Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 80, 669-696 (2001). Zbl1038.35020MR1846020
- Cordero-Erausquin, D. Some applications of mass transport to Gaussian type inequalities (2000). Arch. Rational Mech. Anal. 161, 257-269 (2002). Zbl0998.60080MR1894593
- Cordero-Erausquin, D., Nazaret, B. and Villani, C. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307-332 (2004). Zbl1048.26010MR2032031
- Davies, E. B. Heat kernel and spectral theory. Cambridge Univ. Press (1989). Zbl0699.35006MR990239
- Demange, J. Porous media equation and Sobolev inequalities under negative curvature. Bull. Sci. Math. 129, 804-830 (2005). Zbl1088.58507MR2178944
- Evans, L. C. Partial differential equations. Graduate Studies in Math. 19. Amer. Math. Soc. (1997). Zbl1194.35001
- Federbush, P. A partially alternate derivation of a result of Nelson. J. Math. Phys. 10, 50-52 (1969). Zbl0165.58301
- Gardner, R. J. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. 39, 355-405 (2002). Zbl1019.26008MR1898210
- Gross, L. Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083 (1975). Zbl0318.46049MR420249
- Das Gupta, S. Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal. 10, 296-318 (1980). Zbl0467.26008MR588074
- Ledoux, M. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse IX, 305-366 (2000). Zbl0980.60097MR1813804
- Ledoux, M. Géométrie des espaces métriques mesurés : les travaux de Lott, Villani, Sturm. Séminaire Bourbaki, Astérisque 326, 257-280 (2009). Zbl1207.53051MR2605325
- Leindler, L. On a certain converse of Hölder’s inequality II. Acta Sci. Math. Szeged 33, 217-223 (1972). Zbl0245.26011MR2199372
- Li, P. and Yau, S.-T. On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153-201 (1986). Zbl0611.58045MR834612
- Otto, F. and Villani, C. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361-400 (2000). Zbl0985.58019MR1760620
- Prékopa, A. On logarithmic concave measures and functions. Acta Sci. Math. Szeged 34, 335-343 (1973). Zbl0264.90038MR404557
- Royer, G. An initiation to logarithmic Sobolev inequalities. Translated from the 1999 French original. SMF/AMS Texts and Monographs 14. Amer. Math. Soc. / Soc. Math. de France (2007). Zbl1138.60007MR2352327
- Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2, 101-112 (1959). Zbl0085.34701MR109101
- Villani, C. Topics in optimal transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc. (2003). Zbl1106.90001MR1964483
- Villani, C. Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften, 338. Springer (2009). Zbl1156.53003MR2459454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.