Analytic and Geometric Logarithmic Sobolev Inequalities

Michel Ledoux[1]

  • [1] Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse, France, and Institut Universitaire de France

Journées Équations aux dérivées partielles (2011)

  • page 1-15
  • ISSN: 0752-0360

Abstract

top
We survey analytic and geometric proofs of classical logarithmic Sobolev inequalities for Gaussian and more general strictly log-concave probability measures. Developments of the last decade link the two approaches through heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry and mass transportation.

How to cite

top

Ledoux, Michel. "Analytic and Geometric Logarithmic Sobolev Inequalities." Journées Équations aux dérivées partielles (2011): 1-15. <http://eudml.org/doc/219690>.

@article{Ledoux2011,
abstract = {We survey analytic and geometric proofs of classical logarithmic Sobolev inequalities for Gaussian and more general strictly log-concave probability measures. Developments of the last decade link the two approaches through heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry and mass transportation.},
affiliation = {Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse, France, and Institut Universitaire de France},
author = {Ledoux, Michel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Logarithmic Sobolev inequality; heat kernel; Brunn-Minkowski inequality},
language = {eng},
month = {6},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Analytic and Geometric Logarithmic Sobolev Inequalities},
url = {http://eudml.org/doc/219690},
year = {2011},
}

TY - JOUR
AU - Ledoux, Michel
TI - Analytic and Geometric Logarithmic Sobolev Inequalities
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 15
AB - We survey analytic and geometric proofs of classical logarithmic Sobolev inequalities for Gaussian and more general strictly log-concave probability measures. Developments of the last decade link the two approaches through heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry and mass transportation.
LA - eng
KW - Logarithmic Sobolev inequality; heat kernel; Brunn-Minkowski inequality
UR - http://eudml.org/doc/219690
ER -

References

top
  1. Ané, C. et al. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses, vol. 10. Soc. Math. de France (2000). Zbl0982.46026MR1845806
  2. Bakry, D. L’hypercontractivité et son utilisation en théorie des semigroupes. Ecole d’Eté de Probabilités de St-Flour. Springer Lecture Notes in Math. 1581, 1-114 (1994). Zbl0856.47026MR1307413
  3. Bakry, D. Functional inequalities for Markov semigroups. Probability Measures on Groups: Recent Directions and Trends. Proceedings of the CIMPA-TIFR School (2002). Tata Institute of Fundamental Research, New Delhi, 91-147 (2006). Zbl1148.60057MR2213477
  4. Bakry, D. and Émery, M. Diffusions hypercontractives. Séminaire de Probabilités, XIX. Springer Lecture Notes in Math. 1123, 177-206 (1985). Zbl0561.60080MR889476
  5. Bakry, D., Gentil, I. and Ledoux, M. Forthcoming monograph (2012). 
  6. Bakry, D. and Ledoux, M. A logarithmic Sobolev form of the Li-Yau parabolic inequality. Revista Mat. Iberoamericana 22, 683-702 (2006). Zbl1116.58024MR2294794
  7. Barthe, F. Autour de l’inégalité de Brunn-Minkowski. Ann. Fac. Sci. Toulouse Math. 12, 127-178 (2003). Zbl1052.52002MR2123254
  8. Bobkov, S. and Ledoux, M. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10, 1028-1052 (2000). Zbl0969.26019MR1800062
  9. Bobkov, S. and Ledoux, M. From Brunn-Minkowski to sharp Sobolev inequalities. Annali di Matematica Pura ed Applicata 187, 369-384 (2008). Zbl1223.26036MR2393140
  10. Bobkov, S., Gentil, I. and Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 80, 669-696 (2001). Zbl1038.35020MR1846020
  11. Cordero-Erausquin, D. Some applications of mass transport to Gaussian type inequalities (2000). Arch. Rational Mech. Anal. 161, 257-269 (2002). Zbl0998.60080MR1894593
  12. Cordero-Erausquin, D., Nazaret, B. and Villani, C. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307-332 (2004). Zbl1048.26010MR2032031
  13. Davies, E. B. Heat kernel and spectral theory. Cambridge Univ. Press (1989). Zbl0699.35006MR990239
  14. Demange, J. Porous media equation and Sobolev inequalities under negative curvature. Bull. Sci. Math. 129, 804-830 (2005). Zbl1088.58507MR2178944
  15. Evans, L. C. Partial differential equations. Graduate Studies in Math. 19. Amer. Math. Soc. (1997). Zbl1194.35001
  16. Federbush, P. A partially alternate derivation of a result of Nelson. J. Math. Phys. 10, 50-52 (1969). Zbl0165.58301
  17. Gardner, R. J. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. 39, 355-405 (2002). Zbl1019.26008MR1898210
  18. Gross, L. Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083 (1975). Zbl0318.46049MR420249
  19. Das Gupta, S. Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal. 10, 296-318 (1980). Zbl0467.26008MR588074
  20. Ledoux, M. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse IX, 305-366 (2000). Zbl0980.60097MR1813804
  21. Ledoux, M. Géométrie des espaces métriques mesurés : les travaux de Lott, Villani, Sturm. Séminaire Bourbaki, Astérisque 326, 257-280 (2009). Zbl1207.53051MR2605325
  22. Leindler, L. On a certain converse of Hölder’s inequality II. Acta Sci. Math. Szeged 33, 217-223 (1972). Zbl0245.26011MR2199372
  23. Li, P. and Yau, S.-T. On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153-201 (1986). Zbl0611.58045MR834612
  24. Otto, F. and Villani, C. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361-400 (2000). Zbl0985.58019MR1760620
  25. Prékopa, A. On logarithmic concave measures and functions. Acta Sci. Math. Szeged 34, 335-343 (1973). Zbl0264.90038MR404557
  26. Royer, G. An initiation to logarithmic Sobolev inequalities. Translated from the 1999 French original. SMF/AMS Texts and Monographs 14. Amer. Math. Soc. / Soc. Math. de France (2007). Zbl1138.60007MR2352327
  27. Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2, 101-112 (1959). Zbl0085.34701MR109101
  28. Villani, C. Topics in optimal transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc. (2003). Zbl1106.90001MR1964483
  29. Villani, C. Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften, 338. Springer (2009). Zbl1156.53003MR2459454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.