On non-abelian Stark-type conjectures

Andreas Nickel[1]

  • [1] Universität Regensburg Fakultät für Mathematik Universitätsstr. 31 93053 Regensburg, Germany

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2577-2608
  • ISSN: 0373-0956

Abstract

top
We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of number fields. Moreover, we discuss how they are related to the equivariant Tamagawa number conjecture, the strong Stark conjecture and a non-abelian generalization of Rubin’s conjecture due to D. Burns.

How to cite

top

Nickel, Andreas. "On non-abelian Stark-type conjectures." Annales de l’institut Fourier 61.6 (2011): 2577-2608. <http://eudml.org/doc/219691>.

@article{Nickel2011,
abstract = {We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of number fields. Moreover, we discuss how they are related to the equivariant Tamagawa number conjecture, the strong Stark conjecture and a non-abelian generalization of Rubin’s conjecture due to D. Burns.},
affiliation = {Universität Regensburg Fakultät für Mathematik Universitätsstr. 31 93053 Regensburg, Germany},
author = {Nickel, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {Stark conjectures; $L$-values; class groups; Brumer conjecture; Brumer-Stark; annihilators; Fitting ideals; noncommutative rings; maximal orders; reduced norms},
language = {eng},
number = {6},
pages = {2577-2608},
publisher = {Association des Annales de l’institut Fourier},
title = {On non-abelian Stark-type conjectures},
url = {http://eudml.org/doc/219691},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Nickel, Andreas
TI - On non-abelian Stark-type conjectures
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2577
EP - 2608
AB - We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of number fields. Moreover, we discuss how they are related to the equivariant Tamagawa number conjecture, the strong Stark conjecture and a non-abelian generalization of Rubin’s conjecture due to D. Burns.
LA - eng
KW - Stark conjectures; $L$-values; class groups; Brumer conjecture; Brumer-Stark; annihilators; Fitting ideals; noncommutative rings; maximal orders; reduced norms
UR - http://eudml.org/doc/219691
ER -

References

top
  1. Daniel Barsky, Fonctions zeta p -adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78) (1978), Secrétariat Math., Paris Zbl0406.12008MR525346
  2. D. Burns, Equivariant Tamagawa numbers and Galois module theory. I, Compositio Math. 129 (2001), 203-237 Zbl1014.11070MR1863302
  3. D. Burns, On refined Stark conjectures in the non-abelian case, Math. Res. Lett. 15 (2008), 841-856 Zbl1184.11049MR2443986
  4. D. Burns, On main conjectures in non-commutative Iwasawa theory and related conjectures, (2010) Zbl1322.11110
  5. D. Burns, On derivatives of Artin L -series, Invent. Math. (to appear) Zbl1239.11128MR2845620
  6. D. Burns, M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570 (electronic) Zbl1052.11077MR1884523
  7. D. Burns, H. Johnston, A non-abelian Stickelberger Theorem, Compositio Math. 147 (2011), 35-55 Zbl1222.11130MR2771125
  8. Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p -adiques, Invent. Math. 51 (1979), 29-59 Zbl0408.12015MR524276
  9. T. Chinburg, On the Galois structure of algebraic integers and S -units, Invent. Math. 74 (1983), 321-349 Zbl0564.12016MR724009
  10. T. Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), 351-376 Zbl0567.12010MR786352
  11. Charles W. Curtis, Irving Reiner, Methods of representation theory. Vol. I, (1981), John Wiley & Sons Inc., New York Zbl0616.20001MR632548
  12. Charles W. Curtis, Irving Reiner, Methods of representation theory. Vol. II, (1987), John Wiley & Sons Inc., New York Zbl0616.20001MR892316
  13. Pierre Deligne, Kenneth A. Ribet, Values of abelian L -functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286 Zbl0434.12009MR579702
  14. C. Greither, Arithmetic annihilators and Stark-type conjectures, Stark’s Conjectures: Recent work and new directions, Papers from the international conference on Stark’s Conjectures and related topics 358 (2004), 55-78, BurnsD.D., Johns Hopkins University, Baltimore, August 5-9, 2002 Zbl1072.11083MR2088712
  15. C. Greither, Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture, Compositio Math. 143 (2007), 1399-1426 Zbl1135.11059MR2371374
  16. C. Greither, Masato Kurihara, Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation, Math. Z. 260 (2008), 905-930 Zbl1159.11042MR2443336
  17. C. Greither, Xavier-François Roblot, Brett A. Tangedal, The Brumer-Stark conjecture in some families of extensions of specified degree, Math. Comp. 73 (2004), 297-315 (electronic) Zbl1094.11043MR2034123
  18. K. W. Gruenberg, J. Ritter, A. Weiss, A local approach to Chinburg’s root number conjecture, Proc. London Math. Soc. (3) 79 (1999), 47-80 Zbl1041.11075MR1687551
  19. A. Nickel, Non-commutative Fitting invariants and annihilation of class groups, J. Algebra 323 (2010), 2756-2778 Zbl1222.11132MR2609173
  20. A. Nickel, On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, Math. Z. (2010) Zbl1222.11133MR2805422
  21. A. Nickel, On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, II, Compositio Math. (to appear) Zbl1222.11133MR2822866
  22. A. Parker, Equivariant Tamagawa Numbers and non-commutative Fitting invariants, (2007) 
  23. J. Ritter, A. Weiss, A Tate sequence for global units, Compositio Math. 102 (1996), 147-178 Zbl0948.11041MR1394524
  24. J. Ritter, A. Weiss, On the ’main conjecture’ of equivariant Iwasawa theory, preprint (2010) Zbl1228.11165MR2813337
  25. Karl Rubin, A Stark conjecture “over Z ” for abelian L -functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), 33-62 Zbl0834.11044MR1385509
  26. R. G. Swan, Algebraic K -theory, (1968), Springer-Verlag, Berlin Zbl0193.34601MR245634
  27. J. Tate, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709-719 Zbl0146.06501MR207680
  28. J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0 , 47 (1984), Birkhäuser Boston Inc., Boston, MA Zbl0545.12009MR782485
  29. A. Weiss, Multiplicative Galois module structure, 5 (1996), American Mathematical Society, Providence, RI Zbl0856.11050MR1386895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.