On non-abelian Stark-type conjectures
- [1] Universität Regensburg Fakultät für Mathematik Universitätsstr. 31 93053 Regensburg, Germany
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2577-2608
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNickel, Andreas. "On non-abelian Stark-type conjectures." Annales de l’institut Fourier 61.6 (2011): 2577-2608. <http://eudml.org/doc/219691>.
@article{Nickel2011,
abstract = {We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of number fields. Moreover, we discuss how they are related to the equivariant Tamagawa number conjecture, the strong Stark conjecture and a non-abelian generalization of Rubin’s conjecture due to D. Burns.},
affiliation = {Universität Regensburg Fakultät für Mathematik Universitätsstr. 31 93053 Regensburg, Germany},
author = {Nickel, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {Stark conjectures; $L$-values; class groups; Brumer conjecture; Brumer-Stark; annihilators; Fitting ideals; noncommutative rings; maximal orders; reduced norms},
language = {eng},
number = {6},
pages = {2577-2608},
publisher = {Association des Annales de l’institut Fourier},
title = {On non-abelian Stark-type conjectures},
url = {http://eudml.org/doc/219691},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Nickel, Andreas
TI - On non-abelian Stark-type conjectures
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2577
EP - 2608
AB - We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of number fields. Moreover, we discuss how they are related to the equivariant Tamagawa number conjecture, the strong Stark conjecture and a non-abelian generalization of Rubin’s conjecture due to D. Burns.
LA - eng
KW - Stark conjectures; $L$-values; class groups; Brumer conjecture; Brumer-Stark; annihilators; Fitting ideals; noncommutative rings; maximal orders; reduced norms
UR - http://eudml.org/doc/219691
ER -
References
top- Daniel Barsky, Fonctions zeta -adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78) (1978), Secrétariat Math., Paris Zbl0406.12008MR525346
- D. Burns, Equivariant Tamagawa numbers and Galois module theory. I, Compositio Math. 129 (2001), 203-237 Zbl1014.11070MR1863302
- D. Burns, On refined Stark conjectures in the non-abelian case, Math. Res. Lett. 15 (2008), 841-856 Zbl1184.11049MR2443986
- D. Burns, On main conjectures in non-commutative Iwasawa theory and related conjectures, (2010) Zbl1322.11110
- D. Burns, On derivatives of Artin -series, Invent. Math. (to appear) Zbl1239.11128MR2845620
- D. Burns, M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570 (electronic) Zbl1052.11077MR1884523
- D. Burns, H. Johnston, A non-abelian Stickelberger Theorem, Compositio Math. 147 (2011), 35-55 Zbl1222.11130MR2771125
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta -adiques, Invent. Math. 51 (1979), 29-59 Zbl0408.12015MR524276
- T. Chinburg, On the Galois structure of algebraic integers and -units, Invent. Math. 74 (1983), 321-349 Zbl0564.12016MR724009
- T. Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), 351-376 Zbl0567.12010MR786352
- Charles W. Curtis, Irving Reiner, Methods of representation theory. Vol. I, (1981), John Wiley & Sons Inc., New York Zbl0616.20001MR632548
- Charles W. Curtis, Irving Reiner, Methods of representation theory. Vol. II, (1987), John Wiley & Sons Inc., New York Zbl0616.20001MR892316
- Pierre Deligne, Kenneth A. Ribet, Values of abelian -functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286 Zbl0434.12009MR579702
- C. Greither, Arithmetic annihilators and Stark-type conjectures, Stark’s Conjectures: Recent work and new directions, Papers from the international conference on Stark’s Conjectures and related topics 358 (2004), 55-78, BurnsD.D., Johns Hopkins University, Baltimore, August 5-9, 2002 Zbl1072.11083MR2088712
- C. Greither, Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture, Compositio Math. 143 (2007), 1399-1426 Zbl1135.11059MR2371374
- C. Greither, Masato Kurihara, Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation, Math. Z. 260 (2008), 905-930 Zbl1159.11042MR2443336
- C. Greither, Xavier-François Roblot, Brett A. Tangedal, The Brumer-Stark conjecture in some families of extensions of specified degree, Math. Comp. 73 (2004), 297-315 (electronic) Zbl1094.11043MR2034123
- K. W. Gruenberg, J. Ritter, A. Weiss, A local approach to Chinburg’s root number conjecture, Proc. London Math. Soc. (3) 79 (1999), 47-80 Zbl1041.11075MR1687551
- A. Nickel, Non-commutative Fitting invariants and annihilation of class groups, J. Algebra 323 (2010), 2756-2778 Zbl1222.11132MR2609173
- A. Nickel, On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, Math. Z. (2010) Zbl1222.11133MR2805422
- A. Nickel, On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, II, Compositio Math. (to appear) Zbl1222.11133MR2822866
- A. Parker, Equivariant Tamagawa Numbers and non-commutative Fitting invariants, (2007)
- J. Ritter, A. Weiss, A Tate sequence for global units, Compositio Math. 102 (1996), 147-178 Zbl0948.11041MR1394524
- J. Ritter, A. Weiss, On the ’main conjecture’ of equivariant Iwasawa theory, preprint (2010) Zbl1228.11165MR2813337
- Karl Rubin, A Stark conjecture “over ” for abelian -functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), 33-62 Zbl0834.11044MR1385509
- R. G. Swan, Algebraic -theory, (1968), Springer-Verlag, Berlin Zbl0193.34601MR245634
- J. Tate, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709-719 Zbl0146.06501MR207680
- J. Tate, Les conjectures de Stark sur les fonctions d’Artin en , 47 (1984), Birkhäuser Boston Inc., Boston, MA Zbl0545.12009MR782485
- A. Weiss, Multiplicative Galois module structure, 5 (1996), American Mathematical Society, Providence, RI Zbl0856.11050MR1386895
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.