On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups
Karl-H. Neeb[1]
- [1] Department Mathematik, FAU Erlangen-Nürnberg, Bismarckstrasse 1 1/2, 91054-Erlangen, Germany
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 1839-1874
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeeb, Karl-H.. "On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups." Annales de l’institut Fourier 61.5 (2011): 1839-1874. <http://eudml.org/doc/219711>.
@article{Neeb2011,
abstract = {Let $G$ be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra $\mathfrak\{g\}$ we define the concept of an analytic functional and show that every positive analytic functional $\lambda $ is integrable in the sense that it is of the form $\lambda (D) = \langle \{\tt d\}\pi (D)v, v\rangle $ for an analytic vector $v$ of a unitary representation of $G$. On the way to this result we derive criteria for the integrability of $*$-representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.For the matrix coefficient $\pi ^\{v,v\}(g) = \langle \pi (g)v,v\rangle $ of a vector $v$ in a unitary representation of an analytic Fréchet–Lie group $G$ we show that $v$ is an analytic vector if and only if $\pi ^\{v,v\}$ is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group $G$ extends to a global analytic function.},
affiliation = {Department Mathematik, FAU Erlangen-Nürnberg, Bismarckstrasse 1 1/2, 91054-Erlangen, Germany},
author = {Neeb, Karl-H.},
journal = {Annales de l’institut Fourier},
keywords = {Infinite dimensional Lie group; unitary representation; positive definite function; analytic vector; integrability of Lie algebra representations; Lie group; Lie algebra; integrable representation},
language = {eng},
number = {5},
pages = {1839-1874},
publisher = {Association des Annales de l’institut Fourier},
title = {On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups},
url = {http://eudml.org/doc/219711},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Neeb, Karl-H.
TI - On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1839
EP - 1874
AB - Let $G$ be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra $\mathfrak{g}$ we define the concept of an analytic functional and show that every positive analytic functional $\lambda $ is integrable in the sense that it is of the form $\lambda (D) = \langle {\tt d}\pi (D)v, v\rangle $ for an analytic vector $v$ of a unitary representation of $G$. On the way to this result we derive criteria for the integrability of $*$-representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.For the matrix coefficient $\pi ^{v,v}(g) = \langle \pi (g)v,v\rangle $ of a vector $v$ in a unitary representation of an analytic Fréchet–Lie group $G$ we show that $v$ is an analytic vector if and only if $\pi ^{v,v}$ is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group $G$ extends to a global analytic function.
LA - eng
KW - Infinite dimensional Lie group; unitary representation; positive definite function; analytic vector; integrability of Lie algebra representations; Lie group; Lie algebra; integrable representation
UR - http://eudml.org/doc/219711
ER -
References
top- A. Abouqateb, K.-H. Neeb, Integration of locally exponential Lie algebras of vector fields, Annals Global Analysis Geom. 33:1 (2008), 89-100 Zbl1135.22021MR2369188
- N. I. Akhiezer, The Classical Moment Problem, (1965), Oliver and Boyd, Edinburgh Zbl0135.33803
- D. Beltita, K.-H. Neeb, A non-smooth continuous unitary representation of a Banach–Lie group, J. Lie Theory 18 (2008), 933-936 Zbl1203.22013MR2523145
- C. Berg, J.P.R. Christensen, P. Ressel, Harmonic analysis on semigroups, 100 (1984), Springer Verlag, Berlin, Heidelberg, New York Zbl0619.43001MR747302
- J. Bochnak, J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112 Zbl0214.37703MR313811
- J. Bochnak, J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76 Zbl0214.37702MR313810
- H.-J. Borchers, J. Yngvason, Integral representations of Schwinger functionals and the moment problem over nuclear spaces, Comm. math. Phys. 43:3 (1975), 255-271 Zbl0307.46054MR383099
- N. Bourbaki, Lie Groups and Lie Algebras, Chapter 1–3, (1989), Springer Verlag, Berlin Zbl0672.22001MR979493
- N. Bourbaki, Espaces vectoriels topologiques. Chap.1 à 5, (2007), Springer Verlag, Berlin
- P. Cartier, J. Dixmier, Vecteurs analytiques dans les représentations de groupes de Lie, Amer. J. Math. 80 (1958), 131-145 Zbl0081.11204MR94406
- B. Driver, M. Gordina, Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups Zbl1197.35127
- W. T. van Est, Th. J. Korthagen, Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. Series A, Indag. Math. 26 (1964), 15-31 Zbl0121.27503MR160851
- J. Faraut, Infinite Dimensional Spherical Analysis, 10 (2008), Kyushu Univ. Zbl1154.43008MR2391335
- M. Flato, J. Simon, H. Snellman, D. Sternheimer, Simple facts about analytic vectors and integrability, Ann. Sci. École Norm. Sup. (4) 5 (1972), 423-434 Zbl0239.22019MR376960
- L. Gårding, Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France 88 (1960), 73-93 Zbl0095.10402MR119104
- H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb (Eds.) 55 (2002), 43-59, Banach Center Publications Zbl1020.58009MR1911976
- H. Glöckner, K.-H. Neeb, Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples Zbl06162096
- F. Goodman, P. E. T. Jørgensen, Lie algebras of unbounded derivations, J. Funct. Anal. 52 (1983), 369-384 Zbl0515.46059MR712587
- R. W. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc. 143 (1969), 55-76 Zbl0189.14102MR248285
- G. C. Hegerfeldt, Gårding domains and analytic vectors for quantum fields, J. Math. Phys. 13 (1972), 821-827 Zbl0239.46030MR300571
- G. C. Hegerfeldt, Extremal decompositions of Wightman functions and of states on nuclear -algebras by Choquet theory, Comm. Math. Phys. 54:2 (1975), 133-135 Zbl0315.46064MR454672
- P. E. T. Jørgensen, Operators and Representation Theory, 147 (1988), North-Holland Zbl0678.46050
- P.E.T. Jørgensen, Analytic continuation of local representations of Lie groups, Pac. J. Math. 125:2 (1986), 397-408 Zbl0559.22011MR863534
- P.E.T. Jørgensen, Analytic continuation of local representations of symmetric spaces, J. Funct. Anal. 70 (1987), 304-322 Zbl0608.22010MR874059
- P.E.T. Jørgensen, Integral representations for locally defined positive definite functions on Lie groups, Int. J. Math. 2:3 (1991), 257-286 Zbl0764.43001MR1104120
- M. G. Krein, Hermitian positive definite kernels on homogeneous spaces I, Amer. Math. Soc. Transl. Ser. 2 34 (1963), 69-108 Zbl0131.12101
- M. Lüscher, G. Mack, Global conformal invariance and quantum field theory, Comm. Math. Phys. 41 (1975), 203-234 MR371282
- M. Magyar, Continuous Linear Representations, 168 (1992), North-Holland Zbl0793.22007MR1150050
- S. Merigon, Integrating representations of Banach–Lie algebras Zbl1226.22024
- J. Milnor, Remarks on infinite-dimensional Lie groups, in DeWitt, B., Stora, R. (eds), “Relativité, groupes et topologie II” (Les Houches, 1983), North Holland, Amsterdam, 1984; 1007–1057 Zbl0594.22009
- R. T. Moore, Measurable, continuous and smooth vectors for semigroup and group representations, Memoirs of the Amer. Math. Soc. 19 (1968), 1-80 Zbl0165.48601MR229091
- C. Müller, K.-H. Neeb, H. Seppänen, Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Not. 2010:5 (2010), 783-823 Zbl1187.22017MR2595011
- K.-H. Neeb, Holomorphy and Convexity in Lie Theory, 28 (2000), de Gruyter Verlag, Berlin Zbl0936.22001MR1740617
- K.-H. Neeb, Towards a Lie theory of locally convex groups, Jap. J. Math. 3rd ser. 1:2 (2006), 291-468 Zbl1161.22012MR2261066
- K.-H. Neeb, On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814-2855 Zbl1204.22016MR2719276
- E. Nelson, Analytic vectors, Annals of Math. 70:3 (1959), 572-615 Zbl0091.10704MR107176
- G. I. Olshanski, Unitary representations of infinite dimensional -pairs and the formalism of R. Howe, Representations of Lie Groups and Related Topics 7 (1990), VershikA. M.A. M. Zbl0724.22020MR1104279
- G. I. Olshanski, On semigroups related to infinite dimensional groups, Topics in representation theory, Amer. Math. Soc., 2 (1991), 67-101, Adv. Sov. mathematics Zbl0736.22014MR1104938
- R.T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85-124 Zbl0214.14102MR283580
- R.T. Powers, Selfadjoint algebras of unbounded operators, II, Trans. Amer. Math. Soc. 187:1 (1974), 261-293 Zbl0296.46059MR333743
- M. C. Reed., A Gårding domain for quantum fields, Comm. Math. Phys. 14 (1969), 336-346 Zbl0186.28303MR250616
- S. Reed, B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, (1975), Academic Press, New York Zbl0242.46001
- W. Rudin, Functional Analysis, (1973), McGraw Hill Zbl0867.46001MR365062
- Y. S. Samoilenko, Spectral Theory of Families of Self-Adjoint Operators, (1991), Kluwer Acad. Publ. MR1135325
- K. Schmüdgen, Positive cones in enveloping algebras, Reports Math. Phys. 14 (1978), 385-404 Zbl0424.46040MR530471
- K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, 37 (1990), Birkhäuser Verlag, Basel Zbl0697.47048MR1056697
- A. N. Shiryaev, Probability, 95 (1996), Springer Zbl0835.60002MR1368405
- J. Simon, On the integrability of representations of finite dimensional real Lie algebras, Comm. Math. Phys. 28 (1972), 39-46 Zbl0239.22020MR308333
- G. Warner, Harmonic analysis on semisimple Lie groups I, (1972), Springer Verlag, Berlin, Heidelberg, New York Zbl0265.22020
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.