On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups

Karl-H. Neeb[1]

  • [1] Department Mathematik, FAU Erlangen-Nürnberg, Bismarckstrasse 1 1/2, 91054-Erlangen, Germany

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 1839-1874
  • ISSN: 0373-0956

Abstract

top
Let G be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra 𝔤 we define the concept of an analytic functional and show that every positive analytic functional λ is integrable in the sense that it is of the form λ ( D ) = d π ( D ) v , v for an analytic vector v of a unitary representation of G . On the way to this result we derive criteria for the integrability of * -representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.For the matrix coefficient π v , v ( g ) = π ( g ) v , v of a vector v in a unitary representation of an analytic Fréchet–Lie group G we show that v is an analytic vector if and only if π v , v is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group G extends to a global analytic function.

How to cite

top

Neeb, Karl-H.. "On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups." Annales de l’institut Fourier 61.5 (2011): 1839-1874. <http://eudml.org/doc/219711>.

@article{Neeb2011,
abstract = {Let $G$ be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra $\mathfrak\{g\}$ we define the concept of an analytic functional and show that every positive analytic functional $\lambda $ is integrable in the sense that it is of the form $\lambda (D) = \langle \{\tt d\}\pi (D)v, v\rangle $ for an analytic vector $v$ of a unitary representation of $G$. On the way to this result we derive criteria for the integrability of $*$-representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.For the matrix coefficient $\pi ^\{v,v\}(g) = \langle \pi (g)v,v\rangle $ of a vector $v$ in a unitary representation of an analytic Fréchet–Lie group $G$ we show that $v$ is an analytic vector if and only if $\pi ^\{v,v\}$ is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group $G$ extends to a global analytic function.},
affiliation = {Department Mathematik, FAU Erlangen-Nürnberg, Bismarckstrasse 1 1/2, 91054-Erlangen, Germany},
author = {Neeb, Karl-H.},
journal = {Annales de l’institut Fourier},
keywords = {Infinite dimensional Lie group; unitary representation; positive definite function; analytic vector; integrability of Lie algebra representations; Lie group; Lie algebra; integrable representation},
language = {eng},
number = {5},
pages = {1839-1874},
publisher = {Association des Annales de l’institut Fourier},
title = {On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups},
url = {http://eudml.org/doc/219711},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Neeb, Karl-H.
TI - On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1839
EP - 1874
AB - Let $G$ be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra $\mathfrak{g}$ we define the concept of an analytic functional and show that every positive analytic functional $\lambda $ is integrable in the sense that it is of the form $\lambda (D) = \langle {\tt d}\pi (D)v, v\rangle $ for an analytic vector $v$ of a unitary representation of $G$. On the way to this result we derive criteria for the integrability of $*$-representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.For the matrix coefficient $\pi ^{v,v}(g) = \langle \pi (g)v,v\rangle $ of a vector $v$ in a unitary representation of an analytic Fréchet–Lie group $G$ we show that $v$ is an analytic vector if and only if $\pi ^{v,v}$ is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group $G$ extends to a global analytic function.
LA - eng
KW - Infinite dimensional Lie group; unitary representation; positive definite function; analytic vector; integrability of Lie algebra representations; Lie group; Lie algebra; integrable representation
UR - http://eudml.org/doc/219711
ER -

References

top
  1. A. Abouqateb, K.-H. Neeb, Integration of locally exponential Lie algebras of vector fields, Annals Global Analysis Geom. 33:1 (2008), 89-100 Zbl1135.22021MR2369188
  2. N. I. Akhiezer, The Classical Moment Problem, (1965), Oliver and Boyd, Edinburgh Zbl0135.33803
  3. D. Beltita, K.-H. Neeb, A non-smooth continuous unitary representation of a Banach–Lie group, J. Lie Theory 18 (2008), 933-936 Zbl1203.22013MR2523145
  4. C. Berg, J.P.R. Christensen, P. Ressel, Harmonic analysis on semigroups, 100 (1984), Springer Verlag, Berlin, Heidelberg, New York Zbl0619.43001MR747302
  5. J. Bochnak, J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112 Zbl0214.37703MR313811
  6. J. Bochnak, J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76 Zbl0214.37702MR313810
  7. H.-J. Borchers, J. Yngvason, Integral representations of Schwinger functionals and the moment problem over nuclear spaces, Comm. math. Phys. 43:3 (1975), 255-271 Zbl0307.46054MR383099
  8. N. Bourbaki, Lie Groups and Lie Algebras, Chapter 1–3, (1989), Springer Verlag, Berlin Zbl0672.22001MR979493
  9. N. Bourbaki, Espaces vectoriels topologiques. Chap.1 à 5, (2007), Springer Verlag, Berlin 
  10. P. Cartier, J. Dixmier, Vecteurs analytiques dans les représentations de groupes de Lie, Amer. J. Math. 80 (1958), 131-145 Zbl0081.11204MR94406
  11. B. Driver, M. Gordina, Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups Zbl1197.35127
  12. W. T. van Est, Th. J. Korthagen, Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. Series A, Indag. Math. 26 (1964), 15-31 Zbl0121.27503MR160851
  13. J. Faraut, Infinite Dimensional Spherical Analysis, 10 (2008), Kyushu Univ. Zbl1154.43008MR2391335
  14. M. Flato, J. Simon, H. Snellman, D. Sternheimer, Simple facts about analytic vectors and integrability, Ann. Sci. École Norm. Sup. (4) 5 (1972), 423-434 Zbl0239.22019MR376960
  15. L. Gårding, Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France 88 (1960), 73-93 Zbl0095.10402MR119104
  16. H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb (Eds.) 55 (2002), 43-59, Banach Center Publications Zbl1020.58009MR1911976
  17. H. Glöckner, K.-H. Neeb, Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples Zbl06162096
  18. F. Goodman, P. E. T. Jørgensen, Lie algebras of unbounded derivations, J. Funct. Anal. 52 (1983), 369-384 Zbl0515.46059MR712587
  19. R. W. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc. 143 (1969), 55-76 Zbl0189.14102MR248285
  20. G. C. Hegerfeldt, Gårding domains and analytic vectors for quantum fields, J. Math. Phys. 13 (1972), 821-827 Zbl0239.46030MR300571
  21. G. C. Hegerfeldt, Extremal decompositions of Wightman functions and of states on nuclear * -algebras by Choquet theory, Comm. Math. Phys. 54:2 (1975), 133-135 Zbl0315.46064MR454672
  22. P. E. T. Jørgensen, Operators and Representation Theory, 147 (1988), North-Holland Zbl0678.46050
  23. P.E.T. Jørgensen, Analytic continuation of local representations of Lie groups, Pac. J. Math. 125:2 (1986), 397-408 Zbl0559.22011MR863534
  24. P.E.T. Jørgensen, Analytic continuation of local representations of symmetric spaces, J. Funct. Anal. 70 (1987), 304-322 Zbl0608.22010MR874059
  25. P.E.T. Jørgensen, Integral representations for locally defined positive definite functions on Lie groups, Int. J. Math. 2:3 (1991), 257-286 Zbl0764.43001MR1104120
  26. M. G. Krein, Hermitian positive definite kernels on homogeneous spaces I, Amer. Math. Soc. Transl. Ser. 2 34 (1963), 69-108 Zbl0131.12101
  27. M. Lüscher, G. Mack, Global conformal invariance and quantum field theory, Comm. Math. Phys. 41 (1975), 203-234 MR371282
  28. M. Magyar, Continuous Linear Representations, 168 (1992), North-Holland Zbl0793.22007MR1150050
  29. S. Merigon, Integrating representations of Banach–Lie algebras Zbl1226.22024
  30. J. Milnor, Remarks on infinite-dimensional Lie groups, in DeWitt, B., Stora, R. (eds), “Relativité, groupes et topologie II” (Les Houches, 1983), North Holland, Amsterdam, 1984; 1007–1057 Zbl0594.22009
  31. R. T. Moore, Measurable, continuous and smooth vectors for semigroup and group representations, Memoirs of the Amer. Math. Soc. 19 (1968), 1-80 Zbl0165.48601MR229091
  32. C. Müller, K.-H. Neeb, H. Seppänen, Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Not. 2010:5 (2010), 783-823 Zbl1187.22017MR2595011
  33. K.-H. Neeb, Holomorphy and Convexity in Lie Theory, 28 (2000), de Gruyter Verlag, Berlin Zbl0936.22001MR1740617
  34. K.-H. Neeb, Towards a Lie theory of locally convex groups, Jap. J. Math. 3rd ser. 1:2 (2006), 291-468 Zbl1161.22012MR2261066
  35. K.-H. Neeb, On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814-2855 Zbl1204.22016MR2719276
  36. E. Nelson, Analytic vectors, Annals of Math. 70:3 (1959), 572-615 Zbl0091.10704MR107176
  37. G. I. Olshanski, Unitary representations of infinite dimensional ( G , K ) -pairs and the formalism of R. Howe, Representations of Lie Groups and Related Topics 7 (1990), VershikA. M.A. M. Zbl0724.22020MR1104279
  38. G. I. Olshanski, On semigroups related to infinite dimensional groups, Topics in representation theory, Amer. Math. Soc., 2 (1991), 67-101, Adv. Sov. mathematics Zbl0736.22014MR1104938
  39. R.T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85-124 Zbl0214.14102MR283580
  40. R.T. Powers, Selfadjoint algebras of unbounded operators, II, Trans. Amer. Math. Soc. 187:1 (1974), 261-293 Zbl0296.46059MR333743
  41. M. C. Reed., A Gårding domain for quantum fields, Comm. Math. Phys. 14 (1969), 336-346 Zbl0186.28303MR250616
  42. S. Reed, B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, (1975), Academic Press, New York Zbl0242.46001
  43. W. Rudin, Functional Analysis, (1973), McGraw Hill Zbl0867.46001MR365062
  44. Y. S. Samoilenko, Spectral Theory of Families of Self-Adjoint Operators, (1991), Kluwer Acad. Publ. MR1135325
  45. K. Schmüdgen, Positive cones in enveloping algebras, Reports Math. Phys. 14 (1978), 385-404 Zbl0424.46040MR530471
  46. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, 37 (1990), Birkhäuser Verlag, Basel Zbl0697.47048MR1056697
  47. A. N. Shiryaev, Probability, 95 (1996), Springer Zbl0835.60002MR1368405
  48. J. Simon, On the integrability of representations of finite dimensional real Lie algebras, Comm. Math. Phys. 28 (1972), 39-46 Zbl0239.22020MR308333
  49. G. Warner, Harmonic analysis on semisimple Lie groups I, (1972), Springer Verlag, Berlin, Heidelberg, New York Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.