Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups

K. H. Neeb[1]

  • [1] Department Mathematik FAU Erlangen-Nürnberg, Cauerstrasse 11 91058 Erlangen (Germany)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 1823-1892
  • ISSN: 0373-0956

Abstract

top
A unitary representation π of a, possibly infinite dimensional, Lie group G is called semibounded if the corresponding operators i d π ( x ) from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra 𝔤 of G . We classify all irreducible semibounded representations of the groups ^ φ ( K ) which are double extensions of the twisted loop group φ ( K ) , where K is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and φ is a finite order automorphism of K which leads to one of the 7 irreducible locally affine root systems with their canonical -grading. To achieve this goal, we extend the method of holomorphic induction to certain classes of Fréchet–Lie groups and prove an infinitesimal characterization of analytic operator-valued positive definite functions on Fréchet–BCH–Lie groups.This is the first paper dealing with global aspects of Lie groups whose Lie algebra is an infinite rank analog of an affine Kac–Moody algebra. That positive energy representations are semibounded is a new insight, even for loops in compact Lie groups.

How to cite

top

Neeb, K. H.. "Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups." Annales de l’institut Fourier 64.5 (2014): 1823-1892. <http://eudml.org/doc/275603>.

@article{Neeb2014,
abstract = {A unitary representation $\pi $ of a, possibly infinite dimensional, Lie group $G$ is called semibounded if the corresponding operators $i\{\tt d\}\pi (x)$ from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra $\mathfrak\{g\}$ of $G$. We classify all irreducible semibounded representations of the groups $\widehat\{\mathcal\{L\}\}_\phi (K)$ which are double extensions of the twisted loop group $\mathcal\{L\}_\phi (K)$, where $K$ is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and $\phi $ is a finite order automorphism of $K$ which leads to one of the $7$ irreducible locally affine root systems with their canonical $\mathbb\{Z\}$-grading. To achieve this goal, we extend the method of holomorphic induction to certain classes of Fréchet–Lie groups and prove an infinitesimal characterization of analytic operator-valued positive definite functions on Fréchet–BCH–Lie groups.This is the first paper dealing with global aspects of Lie groups whose Lie algebra is an infinite rank analog of an affine Kac–Moody algebra. That positive energy representations are semibounded is a new insight, even for loops in compact Lie groups.},
affiliation = {Department Mathematik FAU Erlangen-Nürnberg, Cauerstrasse 11 91058 Erlangen (Germany)},
author = {Neeb, K. H.},
journal = {Annales de l’institut Fourier},
keywords = {infinite dimensional Lie group; unitary representation; semibounded representation; Hilbert–Lie algebra; Hilbert–Lie group; Kac–Moody group; loop group; double extension; positive definite function; Kac-Moody group},
language = {eng},
number = {5},
pages = {1823-1892},
publisher = {Association des Annales de l’institut Fourier},
title = {Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups},
url = {http://eudml.org/doc/275603},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Neeb, K. H.
TI - Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1823
EP - 1892
AB - A unitary representation $\pi $ of a, possibly infinite dimensional, Lie group $G$ is called semibounded if the corresponding operators $i{\tt d}\pi (x)$ from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra $\mathfrak{g}$ of $G$. We classify all irreducible semibounded representations of the groups $\widehat{\mathcal{L}}_\phi (K)$ which are double extensions of the twisted loop group $\mathcal{L}_\phi (K)$, where $K$ is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and $\phi $ is a finite order automorphism of $K$ which leads to one of the $7$ irreducible locally affine root systems with their canonical $\mathbb{Z}$-grading. To achieve this goal, we extend the method of holomorphic induction to certain classes of Fréchet–Lie groups and prove an infinitesimal characterization of analytic operator-valued positive definite functions on Fréchet–BCH–Lie groups.This is the first paper dealing with global aspects of Lie groups whose Lie algebra is an infinite rank analog of an affine Kac–Moody algebra. That positive energy representations are semibounded is a new insight, even for loops in compact Lie groups.
LA - eng
KW - infinite dimensional Lie group; unitary representation; semibounded representation; Hilbert–Lie algebra; Hilbert–Lie group; Kac–Moody group; loop group; double extension; positive definite function; Kac-Moody group
UR - http://eudml.org/doc/275603
ER -

References

top
  1. S. Albeverio, R. J. Høegh-Krohn, The energy representation of Sobolev–Lie groups, Composition Math. 36 (1978), 37-51 Zbl0393.22013MR515036
  2. Sergio A. Albeverio, Raphael J. Høegh-Krohn, Jean A. Marion, Daniel H. Testard, Bruno S. Torrésani, Noncommutative distributions, 175 (1993), Marcel Dekker, Inc., New York Zbl0791.22010MR1233384
  3. M. F. Atiyah, A. N. Pressley, Convexity and loop groups, Arithmetic and geometry, Vol. II 36 (1983), 33-63, Birkhäuser Boston, Boston, MA Zbl0529.22013MR717605
  4. Bojko Bakalov, Nikolay M. Nikolov, Karl-Henning Rehren, Ivan Todorov, Unitary positive-energy representations of scalar bilocal quantum fields, Comm. Math. Phys. 271 (2007), 223-246 Zbl1156.81422MR2283959
  5. V. K. Balachandran, Simple L * -algebras of classical type, Math. Ann. 180 (1969), 205-219 Zbl0159.42203MR243362
  6. Daniel Beltiţă, Karl-Hermann Neeb, A nonsmooth continuous unitary representation of a Banach-Lie group, J. Lie Theory 18 (2008), 933-936 Zbl1203.22013MR2523145
  7. F. A. Berezin, Representations of the continuous direct product of universal coverings of the group of motions of the complex ball, Trans. Moscow Math. Soc. 2 (1979), 281-289 Zbl0434.22015
  8. Jacek Bochnak, Józef Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112 Zbl0214.37703MR313811
  9. A. L. Carey, Infinite-dimensional groups and quantum field theory, Acta Appl. Math. 1 (1983), 321-331 Zbl0545.22019MR734749
  10. A. L. Carey, S. N. M. Ruijsenaars, On fermion gauge groups, current algebras and Kac-Moody algebras, Acta Appl. Math. 10 (1987), 1-86 Zbl0644.22012MR904924
  11. Vyjayanthi Chari, Andrew Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), 87-104 Zbl0603.17012MR849057
  12. Vyjayanthi Chari, Andrew Pressley, Unitary representations of the maps S 1 su ( N , 1 ) , Math. Proc. Cambridge Philos. Soc. 102 (1987), 259-272 Zbl0662.17008MR898146
  13. José Antonio Cuenca Mira, García Martín Amable, Cándido Martín González, Structure theory for L * -algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 361-365 Zbl0763.46052MR1027788
  14. Christopher J. Fewster, Stefan Hollands, Quantum energy inequalities in two-dimensional conformal field theory, Rev. Math. Phys. 17 (2005), 577-612 Zbl1083.81581MR2153774
  15. I. M. Gelʼfand, M. I. Graev, A. M. Veršik, Representations of the group of functions taking values in a compact Lie group, Compositio Math. 42 (1980/81), 217-243 Zbl0449.22019MR596877
  16. Helge Glöckner, K.-H. Neeb, Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples Zbl06162096
  17. O. Goertsches, Variationally complete and hyperpolar actions on compact symmetric spaces, (2003) 
  18. Roe Goodman, Nolan R. Wallach, Erratum to the paper: “Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle” [J. Reine Angew. Math. 347 (1984), 69–133], J. Reine Angew. Math. 352 (1984) Zbl0514.22012MR733047
  19. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 80 (1978), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London Zbl0993.53002MR514561
  20. G. Hofmann, K.-H. Neeb, On convex hulls of orbits of Coxeter groups and Weyl groups Zbl06536253
  21. Karl H. Hofmann, Sidney A. Morris, The structure of compact groups, 25 (1998), Walter de Gruyter & Co., Berlin Zbl0919.22001MR1646190
  22. Hans Plesner Jakobsen, Victor G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, Nonlinear equations in classical and quantum field theory (Meudon/Paris, 1983/1984) 226 (1985), 1-20, Springer, Berlin Zbl0581.17009MR802097
  23. Hans Plesner Jakobsen, Victor G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras. II, J. Funct. Anal. 82 (1989), 69-90 Zbl0688.17007MR976313
  24. Bas Janssens, K.-H. Neeb, Norm continuous unitary representations of Lie algebras of smooth sections Zbl06502125
  25. Bas Janssens, Christoph Wockel, Universal central extensions of gauge algebras and groups, J. Reine Angew. Math. 682 (2013), 129-139 Zbl06221006MR3181501
  26. Victor G. Kac, Infinite-dimensional Lie algebras, (1990), Cambridge University Press, Cambridge Zbl0716.17022MR1104219
  27. Victor G. Kac, D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math. 76 (1984), 1-14 Zbl0534.17008MR739620
  28. Katharina Kühn, Direct limits of diagonal chains of type O, U, and Sp, and their homotopy groups, Comm. Algebra 34 (2006), 75-87 Zbl1088.22004MR2194350
  29. Ottmar Loos, Erhard Neher, Locally finite root systems, Mem. Amer. Math. Soc. 171 (2004) Zbl1195.17007MR2073220
  30. Peter Maier, Central extensions of topological current algebras, Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000) 55 (2002), 61-76, Polish Acad. Sci., Warsaw Zbl1045.17008MR1911980
  31. Peter Maier, Karl-Hermann Neeb, Central extensions of current groups, Math. Ann. 326 (2003), 367-415 Zbl1029.22025MR1990915
  32. Bernhard Maissen, Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229-270 Zbl0207.33701MR142693
  33. Alberto Medina, Philippe Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. école Norm. Sup. (4) 18 (1985), 553-561 Zbl0592.17006MR826103
  34. Jouko Mickelsson, Current algebras and groups, (1989), Plenum Press, New York Zbl0726.22015MR1032521
  35. Jun Morita, Yoji Yoshii, Locally extended affine Lie algebras, J. Algebra 301 (2006), 59-81 Zbl1147.17019MR2230320
  36. Karl-Hermann Neeb, Projective semibounded representations of doubly extended Hilbert–Lie groups Zbl1186.22023
  37. Karl-Hermann Neeb, Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. Reine Angew. Math. 497 (1998), 171-222 Zbl0894.22007MR1617431
  38. Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, 28 (2000), Walter de Gruyter & Co., Berlin Zbl0936.22001MR1740617
  39. Karl-Hermann Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 (2002), 1365-1442 Zbl1019.22012MR1935553
  40. Karl-Hermann Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000) 55 (2002), 87-151, Polish Acad. Sci., Warsaw Zbl1010.22024MR1911982
  41. Karl-Hermann Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291-468 Zbl1161.22012MR2261066
  42. Karl-Hermann Neeb, Semibounded representations and invariant cones in infinite dimensional Lie algebras, Confluentes Math. 2 (2010), 37-134 Zbl1186.22023MR2649236
  43. Karl-Hermann Neeb, Unitary highest weight modules of locally affine Lie algebras, Quantum affine algebras, extended affine Lie algebras, and their applications 506 (2010), 227-262, Amer. Math. Soc., Providence, RI Zbl1267.17028MR2642569
  44. Karl-Hermann Neeb, On analytic vectors for unitary representations of infinite dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 61 (2011), 1441-1476 Zbl1241.22023MR2961842
  45. Karl-Hermann Neeb, Semibounded representations of Hermitian Lie groups, Travaux mathématiques. Vol. XXI 21 (2012), 29-109, Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg Zbl1262.22005MR2987649
  46. Karl-Hermann Neeb, Holomorphic realization of unitary representations of Banach-Lie groups, Lie groups: structure, actions, and representations 306 (2013), 185-223, Birkhäuser/Springer, New York Zbl1282.22012MR3186693
  47. Karl-Hermann Neeb, Henrik Seppänen, Borel-Weil theory for groups over commutative Banach algebras, J. Reine Angew. Math. 655 (2011), 165-187 Zbl1239.22016MR2806110
  48. Karl-Hermann Neeb, Christoph Wockel, Central extensions of groups of sections, Ann. Global Anal. Geom. 36 (2009), 381-418 Zbl1215.53031MR2562922
  49. E. Neher, Generators and relations for 3 -graded Lie algebras, J. Algebra 155 (1993), 1-35 Zbl0769.17019MR1206620
  50. Johnny T. Ottesen, Infinite-dimensional groups and algebras in quantum physics, 27 (1995), Springer-Verlag, Berlin Zbl0848.22026MR1345151
  51. Richard S. Palais, Foundations of global non-linear analysis, (1968), W. A. Benjamin, Inc., New York-Amsterdam Zbl0164.11102MR248880
  52. Andrew Pressley, Graeme Segal, Loop groups, (1986), The Clarendon Press, Oxford University Press, New York Zbl0638.22009MR900587
  53. Konrad Schmüdgen, Unbounded operator algebras and representation theory, 37 (1990), Birkhäuser Verlag, Basel Zbl0697.47048MR1056697
  54. John R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80 Zbl0093.30601MR117575
  55. John R. Schue, Cartan decompositions for L * algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349 Zbl0099.10205MR133408
  56. Graeme Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys. 80 (1981), 301-342 Zbl0495.22017MR626704
  57. I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12-41 Zbl0099.12104MR102759
  58. I. E. Segal, The complex-wave representation of the free boson field, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday) 3 (1978), 321-343, Academic Press, New York-London Zbl0471.22024MR538026
  59. Nina Stumme, Locally finite split Lie algebras, (1999) Zbl0931.17001
  60. Nina Stumme, Automorphisms and conjugacy of compact real forms of the classical infinite dimensional matrix Lie algebras, Forum Math. 13 (2001), 817-851 Zbl1010.17015MR1861251
  61. Chuu-Lian Terng, Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989), 9-47 Zbl0674.58004MR978074
  62. Valerio Toledano Laredo, Positive energy representations of the loop groups of non-simply connected Lie groups, Comm. Math. Phys. 207 (1999), 307-339 Zbl0969.22010MR1724846
  63. Bruno Torrésani, Unitary positive energy representations of the gauge group, Lett. Math. Phys. 13 (1987), 7-15 Zbl0618.22013MR878656
  64. A. M. Veršik, I. M. Gelʼfand, M. I. Graev, Irreducible representations of the group G X and cohomology, Funkcional. Anal. i Priložen. 8 (1974), 67-69 Zbl0299.22004MR348032
  65. Joseph Wloka, Partielle Differentialgleichungen, (1982), B. G. Teubner, Stuttgart Zbl0482.35001MR652934
  66. Christoph Wockel, Smooth extensions and spaces of smooth and holomorphic mappings, J. Geom. Symmetry Phys. 5 (2006), 118-126 Zbl1108.58006MR2269885
  67. Yoji Yoshii, Locally extended affine root systems, Quantum affine algebras, extended affine Lie algebras, and their applications 506 (2010), 285-302, Amer. Math. Soc., Providence, RI Zbl1247.17009MR2642571
  68. Ch. Zellner, Semibounded representations of oscillator groups, (2014) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.