Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups
K. H. Neeb[1]
- [1] Department Mathematik FAU Erlangen-Nürnberg, Cauerstrasse 11 91058 Erlangen (Germany)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 1823-1892
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeeb, K. H.. "Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups." Annales de l’institut Fourier 64.5 (2014): 1823-1892. <http://eudml.org/doc/275603>.
@article{Neeb2014,
abstract = {A unitary representation $\pi $ of a, possibly infinite dimensional, Lie group $G$ is called semibounded if the corresponding operators $i\{\tt d\}\pi (x)$ from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra $\mathfrak\{g\}$ of $G$. We classify all irreducible semibounded representations of the groups $\widehat\{\mathcal\{L\}\}_\phi (K)$ which are double extensions of the twisted loop group $\mathcal\{L\}_\phi (K)$, where $K$ is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and $\phi $ is a finite order automorphism of $K$ which leads to one of the $7$ irreducible locally affine root systems with their canonical $\mathbb\{Z\}$-grading. To achieve this goal, we extend the method of holomorphic induction to certain classes of Fréchet–Lie groups and prove an infinitesimal characterization of analytic operator-valued positive definite functions on Fréchet–BCH–Lie groups.This is the first paper dealing with global aspects of Lie groups whose Lie algebra is an infinite rank analog of an affine Kac–Moody algebra. That positive energy representations are semibounded is a new insight, even for loops in compact Lie groups.},
affiliation = {Department Mathematik FAU Erlangen-Nürnberg, Cauerstrasse 11 91058 Erlangen (Germany)},
author = {Neeb, K. H.},
journal = {Annales de l’institut Fourier},
keywords = {infinite dimensional Lie group; unitary representation; semibounded representation; Hilbert–Lie algebra; Hilbert–Lie group; Kac–Moody group; loop group; double extension; positive definite function; Kac-Moody group},
language = {eng},
number = {5},
pages = {1823-1892},
publisher = {Association des Annales de l’institut Fourier},
title = {Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups},
url = {http://eudml.org/doc/275603},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Neeb, K. H.
TI - Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1823
EP - 1892
AB - A unitary representation $\pi $ of a, possibly infinite dimensional, Lie group $G$ is called semibounded if the corresponding operators $i{\tt d}\pi (x)$ from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra $\mathfrak{g}$ of $G$. We classify all irreducible semibounded representations of the groups $\widehat{\mathcal{L}}_\phi (K)$ which are double extensions of the twisted loop group $\mathcal{L}_\phi (K)$, where $K$ is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and $\phi $ is a finite order automorphism of $K$ which leads to one of the $7$ irreducible locally affine root systems with their canonical $\mathbb{Z}$-grading. To achieve this goal, we extend the method of holomorphic induction to certain classes of Fréchet–Lie groups and prove an infinitesimal characterization of analytic operator-valued positive definite functions on Fréchet–BCH–Lie groups.This is the first paper dealing with global aspects of Lie groups whose Lie algebra is an infinite rank analog of an affine Kac–Moody algebra. That positive energy representations are semibounded is a new insight, even for loops in compact Lie groups.
LA - eng
KW - infinite dimensional Lie group; unitary representation; semibounded representation; Hilbert–Lie algebra; Hilbert–Lie group; Kac–Moody group; loop group; double extension; positive definite function; Kac-Moody group
UR - http://eudml.org/doc/275603
ER -
References
top- S. Albeverio, R. J. Høegh-Krohn, The energy representation of Sobolev–Lie groups, Composition Math. 36 (1978), 37-51 Zbl0393.22013MR515036
- Sergio A. Albeverio, Raphael J. Høegh-Krohn, Jean A. Marion, Daniel H. Testard, Bruno S. Torrésani, Noncommutative distributions, 175 (1993), Marcel Dekker, Inc., New York Zbl0791.22010MR1233384
- M. F. Atiyah, A. N. Pressley, Convexity and loop groups, Arithmetic and geometry, Vol. II 36 (1983), 33-63, Birkhäuser Boston, Boston, MA Zbl0529.22013MR717605
- Bojko Bakalov, Nikolay M. Nikolov, Karl-Henning Rehren, Ivan Todorov, Unitary positive-energy representations of scalar bilocal quantum fields, Comm. Math. Phys. 271 (2007), 223-246 Zbl1156.81422MR2283959
- V. K. Balachandran, Simple -algebras of classical type, Math. Ann. 180 (1969), 205-219 Zbl0159.42203MR243362
- Daniel Beltiţă, Karl-Hermann Neeb, A nonsmooth continuous unitary representation of a Banach-Lie group, J. Lie Theory 18 (2008), 933-936 Zbl1203.22013MR2523145
- F. A. Berezin, Representations of the continuous direct product of universal coverings of the group of motions of the complex ball, Trans. Moscow Math. Soc. 2 (1979), 281-289 Zbl0434.22015
- Jacek Bochnak, Józef Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112 Zbl0214.37703MR313811
- A. L. Carey, Infinite-dimensional groups and quantum field theory, Acta Appl. Math. 1 (1983), 321-331 Zbl0545.22019MR734749
- A. L. Carey, S. N. M. Ruijsenaars, On fermion gauge groups, current algebras and Kac-Moody algebras, Acta Appl. Math. 10 (1987), 1-86 Zbl0644.22012MR904924
- Vyjayanthi Chari, Andrew Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), 87-104 Zbl0603.17012MR849057
- Vyjayanthi Chari, Andrew Pressley, Unitary representations of the maps , Math. Proc. Cambridge Philos. Soc. 102 (1987), 259-272 Zbl0662.17008MR898146
- José Antonio Cuenca Mira, García Martín Amable, Cándido Martín González, Structure theory for -algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 361-365 Zbl0763.46052MR1027788
- Christopher J. Fewster, Stefan Hollands, Quantum energy inequalities in two-dimensional conformal field theory, Rev. Math. Phys. 17 (2005), 577-612 Zbl1083.81581MR2153774
- I. M. Gelʼfand, M. I. Graev, A. M. Veršik, Representations of the group of functions taking values in a compact Lie group, Compositio Math. 42 (1980/81), 217-243 Zbl0449.22019MR596877
- Helge Glöckner, K.-H. Neeb, Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples Zbl06162096
- O. Goertsches, Variationally complete and hyperpolar actions on compact symmetric spaces, (2003)
- Roe Goodman, Nolan R. Wallach, Erratum to the paper: “Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle” [J. Reine Angew. Math. 347 (1984), 69–133], J. Reine Angew. Math. 352 (1984) Zbl0514.22012MR733047
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 80 (1978), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London Zbl0993.53002MR514561
- G. Hofmann, K.-H. Neeb, On convex hulls of orbits of Coxeter groups and Weyl groups Zbl06536253
- Karl H. Hofmann, Sidney A. Morris, The structure of compact groups, 25 (1998), Walter de Gruyter & Co., Berlin Zbl0919.22001MR1646190
- Hans Plesner Jakobsen, Victor G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, Nonlinear equations in classical and quantum field theory (Meudon/Paris, 1983/1984) 226 (1985), 1-20, Springer, Berlin Zbl0581.17009MR802097
- Hans Plesner Jakobsen, Victor G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras. II, J. Funct. Anal. 82 (1989), 69-90 Zbl0688.17007MR976313
- Bas Janssens, K.-H. Neeb, Norm continuous unitary representations of Lie algebras of smooth sections Zbl06502125
- Bas Janssens, Christoph Wockel, Universal central extensions of gauge algebras and groups, J. Reine Angew. Math. 682 (2013), 129-139 Zbl06221006MR3181501
- Victor G. Kac, Infinite-dimensional Lie algebras, (1990), Cambridge University Press, Cambridge Zbl0716.17022MR1104219
- Victor G. Kac, D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math. 76 (1984), 1-14 Zbl0534.17008MR739620
- Katharina Kühn, Direct limits of diagonal chains of type O, U, and Sp, and their homotopy groups, Comm. Algebra 34 (2006), 75-87 Zbl1088.22004MR2194350
- Ottmar Loos, Erhard Neher, Locally finite root systems, Mem. Amer. Math. Soc. 171 (2004) Zbl1195.17007MR2073220
- Peter Maier, Central extensions of topological current algebras, Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000) 55 (2002), 61-76, Polish Acad. Sci., Warsaw Zbl1045.17008MR1911980
- Peter Maier, Karl-Hermann Neeb, Central extensions of current groups, Math. Ann. 326 (2003), 367-415 Zbl1029.22025MR1990915
- Bernhard Maissen, Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229-270 Zbl0207.33701MR142693
- Alberto Medina, Philippe Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. école Norm. Sup. (4) 18 (1985), 553-561 Zbl0592.17006MR826103
- Jouko Mickelsson, Current algebras and groups, (1989), Plenum Press, New York Zbl0726.22015MR1032521
- Jun Morita, Yoji Yoshii, Locally extended affine Lie algebras, J. Algebra 301 (2006), 59-81 Zbl1147.17019MR2230320
- Karl-Hermann Neeb, Projective semibounded representations of doubly extended Hilbert–Lie groups Zbl1186.22023
- Karl-Hermann Neeb, Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. Reine Angew. Math. 497 (1998), 171-222 Zbl0894.22007MR1617431
- Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, 28 (2000), Walter de Gruyter & Co., Berlin Zbl0936.22001MR1740617
- Karl-Hermann Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 (2002), 1365-1442 Zbl1019.22012MR1935553
- Karl-Hermann Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000) 55 (2002), 87-151, Polish Acad. Sci., Warsaw Zbl1010.22024MR1911982
- Karl-Hermann Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291-468 Zbl1161.22012MR2261066
- Karl-Hermann Neeb, Semibounded representations and invariant cones in infinite dimensional Lie algebras, Confluentes Math. 2 (2010), 37-134 Zbl1186.22023MR2649236
- Karl-Hermann Neeb, Unitary highest weight modules of locally affine Lie algebras, Quantum affine algebras, extended affine Lie algebras, and their applications 506 (2010), 227-262, Amer. Math. Soc., Providence, RI Zbl1267.17028MR2642569
- Karl-Hermann Neeb, On analytic vectors for unitary representations of infinite dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 61 (2011), 1441-1476 Zbl1241.22023MR2961842
- Karl-Hermann Neeb, Semibounded representations of Hermitian Lie groups, Travaux mathématiques. Vol. XXI 21 (2012), 29-109, Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg Zbl1262.22005MR2987649
- Karl-Hermann Neeb, Holomorphic realization of unitary representations of Banach-Lie groups, Lie groups: structure, actions, and representations 306 (2013), 185-223, Birkhäuser/Springer, New York Zbl1282.22012MR3186693
- Karl-Hermann Neeb, Henrik Seppänen, Borel-Weil theory for groups over commutative Banach algebras, J. Reine Angew. Math. 655 (2011), 165-187 Zbl1239.22016MR2806110
- Karl-Hermann Neeb, Christoph Wockel, Central extensions of groups of sections, Ann. Global Anal. Geom. 36 (2009), 381-418 Zbl1215.53031MR2562922
- E. Neher, Generators and relations for -graded Lie algebras, J. Algebra 155 (1993), 1-35 Zbl0769.17019MR1206620
- Johnny T. Ottesen, Infinite-dimensional groups and algebras in quantum physics, 27 (1995), Springer-Verlag, Berlin Zbl0848.22026MR1345151
- Richard S. Palais, Foundations of global non-linear analysis, (1968), W. A. Benjamin, Inc., New York-Amsterdam Zbl0164.11102MR248880
- Andrew Pressley, Graeme Segal, Loop groups, (1986), The Clarendon Press, Oxford University Press, New York Zbl0638.22009MR900587
- Konrad Schmüdgen, Unbounded operator algebras and representation theory, 37 (1990), Birkhäuser Verlag, Basel Zbl0697.47048MR1056697
- John R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80 Zbl0093.30601MR117575
- John R. Schue, Cartan decompositions for algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349 Zbl0099.10205MR133408
- Graeme Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys. 80 (1981), 301-342 Zbl0495.22017MR626704
- I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12-41 Zbl0099.12104MR102759
- I. E. Segal, The complex-wave representation of the free boson field, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday) 3 (1978), 321-343, Academic Press, New York-London Zbl0471.22024MR538026
- Nina Stumme, Locally finite split Lie algebras, (1999) Zbl0931.17001
- Nina Stumme, Automorphisms and conjugacy of compact real forms of the classical infinite dimensional matrix Lie algebras, Forum Math. 13 (2001), 817-851 Zbl1010.17015MR1861251
- Chuu-Lian Terng, Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989), 9-47 Zbl0674.58004MR978074
- Valerio Toledano Laredo, Positive energy representations of the loop groups of non-simply connected Lie groups, Comm. Math. Phys. 207 (1999), 307-339 Zbl0969.22010MR1724846
- Bruno Torrésani, Unitary positive energy representations of the gauge group, Lett. Math. Phys. 13 (1987), 7-15 Zbl0618.22013MR878656
- A. M. Veršik, I. M. Gelʼfand, M. I. Graev, Irreducible representations of the group and cohomology, Funkcional. Anal. i Priložen. 8 (1974), 67-69 Zbl0299.22004MR348032
- Joseph Wloka, Partielle Differentialgleichungen, (1982), B. G. Teubner, Stuttgart Zbl0482.35001MR652934
- Christoph Wockel, Smooth extensions and spaces of smooth and holomorphic mappings, J. Geom. Symmetry Phys. 5 (2006), 118-126 Zbl1108.58006MR2269885
- Yoji Yoshii, Locally extended affine root systems, Quantum affine algebras, extended affine Lie algebras, and their applications 506 (2010), 285-302, Amer. Math. Soc., Providence, RI Zbl1247.17009MR2642571
- Ch. Zellner, Semibounded representations of oscillator groups, (2014)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.