Jet schemes of complex plane branches and equisingularity
- [1] Université de Versailles Saint-Quentin Laboratoire de Mathématiques de Versailles 45 avenue des États-Unis 78035 Versailles CEDEX (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2313-2336
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMourtada, Hussein. "Jet schemes of complex plane branches and equisingularity." Annales de l’institut Fourier 61.6 (2011): 2313-2336. <http://eudml.org/doc/219717>.
@article{Mourtada2011,
abstract = {For $m \in \mathbb\{N\}$, we determine the irreducible components of the $m-$th Jet Scheme of a complex branch $C$ and we give formulas for their number $N(m)$ and for their codimensions, in terms of $m$ and the generators of the semigroup of $C$. This structure of the Jet Schemes determines and is determined by the topological type of $C$.},
affiliation = {Université de Versailles Saint-Quentin Laboratoire de Mathématiques de Versailles 45 avenue des États-Unis 78035 Versailles CEDEX (France)},
author = {Mourtada, Hussein},
journal = {Annales de l’institut Fourier},
keywords = {Jet schemes; singularities of plane curves; jet schemes},
language = {eng},
number = {6},
pages = {2313-2336},
publisher = {Association des Annales de l’institut Fourier},
title = {Jet schemes of complex plane branches and equisingularity},
url = {http://eudml.org/doc/219717},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Mourtada, Hussein
TI - Jet schemes of complex plane branches and equisingularity
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2313
EP - 2336
AB - For $m \in \mathbb{N}$, we determine the irreducible components of the $m-$th Jet Scheme of a complex branch $C$ and we give formulas for their number $N(m)$ and for their codimensions, in terms of $m$ and the generators of the semigroup of $C$. This structure of the Jet Schemes determines and is determined by the topological type of $C$.
LA - eng
KW - Jet schemes; singularities of plane curves; jet schemes
UR - http://eudml.org/doc/219717
ER -
References
top- Shreeram S. Abhyankar, Irreducibility criterion for germs of analytic functions of two complex variables, Adv. Math. 74 (1989), 190-257 Zbl0683.14001MR997097
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţǎ, Contact loci in arc spaces, Compos. Math. 140 (2004), 1229-1244 Zbl1060.14004MR2081163
- Evelia Garcia Barroso, Invariants des singularités des courbes planes et courbure de fibre de Milnor, (2004)
- Rebecca Goldin, Bernard Teissier, Resolving singularities of plane analytic branches with one toric morphism, Resolution of singularities (Obergurgl, 1997) 181 (2000), 315-340, Birkhäuser, Basel Zbl0995.14002MR1748626
- Janusz Gwoździewicz, Arkadiusz Płoski, On the approximate roots of polynomials Zbl0826.13012
- J. Igusa, On the first terms of certain asymptotic expansions, Complex analysis and algebraic geometry (1977), 357-368, Iwanami Shoten, Tokyo Zbl0355.14012MR485881
- Monique Lejeune-Jalabert, Ana J. Reguera-López, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121 (1999), 1191-1213 Zbl0960.14015MR1719822
- M. Merle, Invariants polaires des courbes planes, Invent. Math. 41 (1977), 103-111 Zbl0371.14003MR460336
- Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397-424 Zbl1091.14004MR1856396
- John F. Nash, Arc structure of singularities, Duke Math. J. 81 (1995), 31-38 Zbl0880.14010MR1381967
- Mark Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), 107-156 Zbl0716.13003MR1037606
- Paul Vojta, Jets via Hasse-Schmidt derivations, Diophantine geometry 4 (2007), 335-361, Ed. Norm., Pisa Zbl1194.13027MR2349665
- Oscar Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536 Zbl0132.41601MR177985
- Oscar Zariski, Le problème des modules pour les branches planes, (1973), École Polytechnique Zbl0317.14004MR414561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.