Jet schemes of complex plane branches and equisingularity

Hussein Mourtada[1]

  • [1] Université de Versailles Saint-Quentin Laboratoire de Mathématiques de Versailles 45 avenue des États-Unis 78035 Versailles CEDEX (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2313-2336
  • ISSN: 0373-0956

Abstract

top
For m , we determine the irreducible components of the m - th Jet Scheme of a complex branch C and we give formulas for their number N ( m ) and for their codimensions, in terms of m and the generators of the semigroup of C . This structure of the Jet Schemes determines and is determined by the topological type of C .

How to cite

top

Mourtada, Hussein. "Jet schemes of complex plane branches and equisingularity." Annales de l’institut Fourier 61.6 (2011): 2313-2336. <http://eudml.org/doc/219717>.

@article{Mourtada2011,
abstract = {For $m \in \mathbb\{N\}$, we determine the irreducible components of the $m-$th Jet Scheme of a complex branch $C$ and we give formulas for their number $N(m)$ and for their codimensions, in terms of $m$ and the generators of the semigroup of $C$. This structure of the Jet Schemes determines and is determined by the topological type of $C$.},
affiliation = {Université de Versailles Saint-Quentin Laboratoire de Mathématiques de Versailles 45 avenue des États-Unis 78035 Versailles CEDEX (France)},
author = {Mourtada, Hussein},
journal = {Annales de l’institut Fourier},
keywords = {Jet schemes; singularities of plane curves; jet schemes},
language = {eng},
number = {6},
pages = {2313-2336},
publisher = {Association des Annales de l’institut Fourier},
title = {Jet schemes of complex plane branches and equisingularity},
url = {http://eudml.org/doc/219717},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Mourtada, Hussein
TI - Jet schemes of complex plane branches and equisingularity
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2313
EP - 2336
AB - For $m \in \mathbb{N}$, we determine the irreducible components of the $m-$th Jet Scheme of a complex branch $C$ and we give formulas for their number $N(m)$ and for their codimensions, in terms of $m$ and the generators of the semigroup of $C$. This structure of the Jet Schemes determines and is determined by the topological type of $C$.
LA - eng
KW - Jet schemes; singularities of plane curves; jet schemes
UR - http://eudml.org/doc/219717
ER -

References

top
  1. Shreeram S. Abhyankar, Irreducibility criterion for germs of analytic functions of two complex variables, Adv. Math. 74 (1989), 190-257 Zbl0683.14001MR997097
  2. Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţǎ, Contact loci in arc spaces, Compos. Math. 140 (2004), 1229-1244 Zbl1060.14004MR2081163
  3. Evelia Garcia Barroso, Invariants des singularités des courbes planes et courbure de fibre de Milnor, (2004) 
  4. Rebecca Goldin, Bernard Teissier, Resolving singularities of plane analytic branches with one toric morphism, Resolution of singularities (Obergurgl, 1997) 181 (2000), 315-340, Birkhäuser, Basel Zbl0995.14002MR1748626
  5. Janusz Gwoździewicz, Arkadiusz Płoski, On the approximate roots of polynomials Zbl0826.13012
  6. J. Igusa, On the first terms of certain asymptotic expansions, Complex analysis and algebraic geometry (1977), 357-368, Iwanami Shoten, Tokyo Zbl0355.14012MR485881
  7. Monique Lejeune-Jalabert, Ana J. Reguera-López, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121 (1999), 1191-1213 Zbl0960.14015MR1719822
  8. M. Merle, Invariants polaires des courbes planes, Invent. Math. 41 (1977), 103-111 Zbl0371.14003MR460336
  9. Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397-424 Zbl1091.14004MR1856396
  10. John F. Nash, Arc structure of singularities, Duke Math. J. 81 (1995), 31-38 Zbl0880.14010MR1381967
  11. Mark Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), 107-156 Zbl0716.13003MR1037606
  12. Paul Vojta, Jets via Hasse-Schmidt derivations, Diophantine geometry 4 (2007), 335-361, Ed. Norm., Pisa Zbl1194.13027MR2349665
  13. Oscar Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536 Zbl0132.41601MR177985
  14. Oscar Zariski, Le problème des modules pour les branches planes, (1973), École Polytechnique Zbl0317.14004MR414561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.