Exceptional singular -homology planes

Karol Palka[1]

  • [1] University of Warsaw Institute of Mathematics ul. Banacha 2 02-097 Warsaw (Poland) Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8 00-956 Warsaw (Poland)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 2, page 745-774
  • ISSN: 0373-0956

Abstract

top
We consider singular -acyclic surfaces with smooth locus of non-general type. We prove that if the singularities are topologically rational then the smooth locus is 1 - or * -ruled or the surface is up to isomorphism one of two exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the Kodaira dimension of the smooth locus is zero and the singular locus consists of a unique point of type A 1 and A 2 respectively.

How to cite

top

Palka, Karol. "Exceptional singular $\mathbb{Q}$-homology planes." Annales de l’institut Fourier 61.2 (2011): 745-774. <http://eudml.org/doc/219718>.

@article{Palka2011,
abstract = {We consider singular $\mathbb\{Q\}$-acyclic surfaces with smooth locus of non-general type. We prove that if the singularities are topologically rational then the smooth locus is $\mathbb\{C\}^1$- or $\mathbb\{C\}^*$-ruled or the surface is up to isomorphism one of two exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the Kodaira dimension of the smooth locus is zero and the singular locus consists of a unique point of type $A_1$ and $A_2$ respectively.},
affiliation = {University of Warsaw Institute of Mathematics ul. Banacha 2 02-097 Warsaw (Poland) Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8 00-956 Warsaw (Poland)},
author = {Palka, Karol},
journal = {Annales de l’institut Fourier},
keywords = {Acyclic surface; homology plane; exceptional Q-homology plane; rational homology plane; -fibration; -fibration},
language = {eng},
number = {2},
pages = {745-774},
publisher = {Association des Annales de l’institut Fourier},
title = {Exceptional singular $\mathbb\{Q\}$-homology planes},
url = {http://eudml.org/doc/219718},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Palka, Karol
TI - Exceptional singular $\mathbb{Q}$-homology planes
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 745
EP - 774
AB - We consider singular $\mathbb{Q}$-acyclic surfaces with smooth locus of non-general type. We prove that if the singularities are topologically rational then the smooth locus is $\mathbb{C}^1$- or $\mathbb{C}^*$-ruled or the surface is up to isomorphism one of two exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the Kodaira dimension of the smooth locus is zero and the singular locus consists of a unique point of type $A_1$ and $A_2$ respectively.
LA - eng
KW - Acyclic surface; homology plane; exceptional Q-homology plane; rational homology plane; -fibration; -fibration
UR - http://eudml.org/doc/219718
ER -

References

top
  1. Shreeram S. Abhyankar, Quasirational singularities, Amer. J. Math. 101 (1979), 267-300 Zbl0425.14009MR527993
  2. Michela Artebani, Igor V. Dolgachev, The Hesse pencil of plane cubic curves, (2006) Zbl1192.14024
  3. Igor V. Dolgachev, Abstract configurations in algebraic geometry, The Fano Conference, 423-462 Zbl1068.14059MR2112585
  4. Takao Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 503-566 Zbl0513.14018MR687591
  5. R. V. Gurjar, Two-dimensional quotients of C n are isomorphic to C 2 / Γ , Transform. Groups 12 (2007), 117-125 Zbl1122.32015MR2308031
  6. R. V. Gurjar, Masayoshi Miyanishi, Affine lines on logarithmic Q -homology planes, Math. Ann. 294 (1992), 463-482 Zbl0757.14022MR1188132
  7. R. V. Gurjar, C. R. Pradeep, Q -homology planes are rational. III, Osaka J. Math. 36 (1999), 259-335 Zbl0954.14013MR1736480
  8. Shigeru Iitaka, Algebraic geometry, 76 (1982), Springer-Verlag, New York Zbl0491.14006MR637060
  9. Yujiro Kawamata, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), 207-217, Kinokuniya Book Store, Tokyo Zbl0437.14018MR578860
  10. Yujiro Kawamata, On the classification of noncomplete algebraic surfaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) 732 (1979), 215-232, Springer, Berlin Zbl0407.14012MR555700
  11. Ryoichi Kobayashi, Uniformization of complex surfaces, Kähler metric and moduli spaces 18 (1990), 313-394, Academic Press, Boston, MA Zbl0755.32024MR1145252
  12. Mariusz Koras, A characterization of A 2 / Z a , Compositio Math. 87 (1993), 241-267 Zbl0807.14025MR1227447
  13. Mariusz Koras, Peter Russell, Contractible affine surfaces with quotient singularities, Transform. Groups 12 (2007), 293-340 Zbl1124.14050MR2323685
  14. Adrian Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proc. London Math. Soc. (3) 86 (2003), 358-396 Zbl1052.14037MR1971155
  15. Masayoshi Miyanishi, Open algebraic surfaces, 12 (2001), American Mathematical Society, Providence, RI Zbl0964.14030MR1800276
  16. Masayoshi Miyanishi, T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), 755-788 Zbl0790.14034MR1127098
  17. Masayoshi Miyanishi, S. Tsunoda, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ. 32 (1992), 443-450 Zbl0794.14017MR1183360
  18. Yoichi Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), 159-171 Zbl0521.14013MR744605
  19. David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), 5-22 Zbl0108.16801MR153682
  20. Karol Palka, Recent progress in the geometry of Q -acyclic surfaces, (2010) Zbl1261.14033
  21. C. R. Pradeep, Anant R. Shastri, On rationality of logarithmic Q -homology planes. I, Osaka J. Math. 34 (1997), 429-456 Zbl0890.14021MR1483859
  22. Tammo Tom Dieck, Ted Petrie, Homology planes: an announcement and survey, Topological methods in algebraic transformation groups (New Brunswick, NJ, 1988) 80 (1989), 27-48, Birkhäuser Boston, Boston, MA Zbl0708.14024MR1040856
  23. M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces, and the characterization of the affine plane, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 534-567, 688 Zbl0666.14018MR903623
  24. M. G. Zaĭdenberg, Additions and corrections to the paper: “Isotrivial families of curves on affine surfaces, and the characterization of the affine plane” [Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 534–567; translation in Math. USSR-Izv. 30 (1988), no. 3, 503–532], Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 444-446 Zbl0749.14019MR1133308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.